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Abstract—In order to effectively detect faults and maintain
heavy machines, a standard practice in several organizations
is to conduct regular manual inspections. The procedure for
conducting such inspections requires marking of the damaged
components on a standardized inspection sheet which is then
camera scanned. These sheets are marked for different faults in
corresponding machine zones using hand-drawn arrows and text.
As a result, the reading environment is highly unstructured and
requires a domain expert while extracting the manually marked
information. In this paper, we propose a novel pipeline to build
an information extraction system for such machine inspection
sheets, utilizing state-of-the-art deep learning and computer
vision techniques. The pipeline proceeds in the following stages:
(1) localization of different zones of the machine, arrows and
text using a combination of template matching, deep learning
and connected components, and (2) mapping the machine zone
to the corresponding arrow head and the text segment to the
arrow tail, followed by pairing them to get the correct damage
code for each zone. Experiments were performed on a dataset
collected from an anonymous real world manufacturing unit.
Results demonstrate the efficacy of the proposed approach and
we also report the accuracy for each step in the pipeline.

I. INTRODUCTION

Factories, power plants, airlines and other industries that
rely on heavy machinery need to routinely conduct inspections
to ensure that their machines are in good health and assess
for any obvious wear and tear or damage to the different
components of the machine. This inspection is often conducted
in the field manually and the results are noted on paper
based inspection sheets having line drawings of the different
zones of the machine. Inspection engineers are hired to note
the assessment of each particular zone of all the machines
and thereafter, record them on the inspection sheet. These
inspections sheets are then camera scanned and archived for
future reference. Because of this reason, inspecting various
zones of machines is a laborious and expensive process. Thus,
as more and more of these industries get digitized, there is
a need for either augmented reality based inspection [1] or
to extract the hand-written information corresponding to the
relevant zone from these inspection sheets for ready access.
These inspection sheets have a particular commonly used
format and the inspection engineers are trained to note down
their assesments according to a provided code for different
types of faults such as cracks, leaks etc. The code is written
on the inspection sheet and connected to the concerned part
in the machine diagram via a hand-drawn arrow as shown in

Figure 1. Several organizations, over the years have conducted
a large number of such inspections which have resulted in
the generation of millions of inspection sheets from which
information is to be extracted and digitized. In this paper, we
propose a computer vision and deep learning based pipeline
to extract information from such inspection sheets with high
accuracy from an anonymous real world dataset. The pipeline
as shown in Figure 3 proceeds in two stages: (1) Specific
Component Localization - It involves using template matching,
for accurate part localization from the standardized machine
diagram, localization of arrow heads and tails using a combina-
tion of Faster-RCNN [2] and a regression model using a deep
convolutional neural network (deep CNN) inspired from Sun
et. al [3]. Simultaneously, we use connected components [4]
to identify the different handwritten text segments. (2) Zone
and Text Assocation - It involves mapping the machine zone to
corresponding text segment in the sheet using the arrow head
and tail information obtained in stage 1.

Fig. 1. A similar example of industrial inspection sheet consisting of line
diagrams for various zones of machines, and their damaged parts indicated
via handwritten codes and arrows.

This paper makes the following contributions:

• We propose the localization of individual zones of stan-
dard machine diagrams using template matching, local-
ization of arrow heads and tails using a combination
of Faster-RCNN [2] and convolutional regression net-
work [3] as discussed in Section III-A1 and III-A2
respectively.

• We propose a method to map machine zones with hand-



written text segments using arrow head and tail informa-
tion as detailed in Section III-B

• We conduct experiments on a dataset of real world inspec-
tion sheets and evaluate the efficiency of our proposed
method while reporting the accuracy at each stage of the
pipeline and the accuracy of individual components of the
pipeline. Results are encouraging as shown in Section IV.

The rest of the paper is organized as follows: Section II
discusses related work in the literature. Section III outlines
the steps involved in the method used for each component in
pipeline, which contains Section III-A explaining individual
part localization and Section III-B explaining text mapping
and zone mapping with the arrows. Section IV details the
experimental setup and presents the results. Finally, Section V
concludes the paper and presents potential avenues for future
work.

II. RELATED WORK

While plenty of research studies are available on document
analysis and text reading [5], [6], there exists limited work
that address the challenges stemming from documents such as
machine inspection sheets. The main objective of the paper
is to automate the task of reading inspector’s comments from
hand marked inspection sheets of various machines in power
plants, factories etc. Although numerous attempts have been
made in the literature on different components of our proposed
pipeline but an end-to-end complete solution for information
extraction from handmarked inspection sheets does not exist.
We have used a template matching technique to find differ-
ent machine zones in the line diagram of inspection sheet.
Template matching [7], [8], [9] is a primary technique in
computer vision for object detection which attempts to find a
sub-image from a target image after matching with a reference
image called template. We observe that arrows are useful
fiducial markers present in the inspection sheets as shown
in Figure 1, to associate machine zones with corresponding
text. Conventional methods for arrow detection are based on
geometry based features [10], edge maps of arrows processed
using hough-transform [11] and multi-class support vector
machines for arrow recognition from image maps extracted
via projection histogram on Inverse perspective image [12].
We trained a deep learning based object recognition algorithm
Faster-RCNN [2] for detecting arrows in the inspection sheets
followed by deep CNN based regression model which inher-
ently learns the handwritten arrow structure. Faster-RCNN is a
deep learning based model for component localization which
consists of a Region Proposal Network for generating region-
proposals and Region-based Convolutional Neural Network
(RCNN) [13] for object detection. Text localization is a
well studied problem in the machine learning community
which basically involves localizing text-regions in the image
and subsequently, reading the corresponding text [14], [4],
[15]. Given that the foreground is well separated, connected
component analysis for detecting text in real world images [4]
and container code recognition on shipping containers [16]
has proven to be effective. Therefore, we use connected

components analysis to localize text regions using the arrow
head and tail information for cues.

III. PROPOSED METHODOLOGY

In this section, we describe our proposed pipeline for infor-
mation extraction from industrial inspection sheets as outlined
in Figure 3. The pipeline contains several modules which in-
volve detection and localization of salient objects like machine
zones, arrows and hand-written text-segments followed by
mapping of the text-segments with the corresponding machine
zones using arrow head and tail position. The mapping is
one-to-one, in a way that each machine is mapped to only
one text segment and vice-versa, where the arrow behaves
like a linker for mapping. The proposed method, in effect, is
divided into 2 major sections: Section III-A explains Individual
Part Localization which gives us the contour of each zone
of interest as an array of pixel locations in the machine line
diagram, pair of head and tail position of each detected arrow
and bounding boxes around text-segments present in the sheets
as shown in Figure 1. The second section III-B is Mapping,
explaining the method for one-to-one mapping of machine
zones with the corresponding text segment using arrow head
and tail positions.

A. Specific Component Localization

1) Machine zone localization: The engineer performing
inspection of different machine zones for any defects, writes
codes and comments manually against every machine zone
in the inspection sheet. Hence, we begin by localization of
every machine zone of the line diagram in the inspection sheet.
As the printed inspection sheets have a standard template
and are scanned by camera with same height, orientation and
intrinsic camera parameter, the structure and size of all line
diagrams of machines in each sheet are the same. Although
their relative location in sheets do vary slightly. Therefore, we
use template matching to localize the machine components in
every inspection sheet. We have created reference templates,
Tk for k ∈ {1, N}, indicating different N machine templates
for each line diagram (one example is shown in Figure 2) and
stored the locations of different zones as set of contours (Ck)
in the database.

(a) (b)

Fig. 2. (a) Reference template of a machine diagram, and (b) Various machine
zones marked with different colors.

While the reference template is slided over rows and
columns of inspection sheets one pixel at a time, it calculates
a cross-correlation metric and then maximizes it over all rows
and columns. Assuming the highest correlation point (lk) as
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Fig. 3. Flowchart depicting the proposed methodology for extracting information from inspection sheets. The first stage involves independently localizing
the arrows, the text regions and the machine zones. The second stage involves mapping arrow heads to machine zones and arrow tails to text regions. The
machine zones can then be directly mapped to the corresponding text regions.

the top-left coordinate of a machine diagram in the given test
inspection sheet, we find contours of corresponding machine
zones (Zk) by making use of lk according to the relation given
in Equation 1.

Zk = Ck + lk (1)

2) Arrow Head and Tail Localization: Another important
component in the inspection sheets is the arrow. Arrows serve
as the connecting entity which are used to map the text seg-
ments with the corresponding machine zone. The handwritten
text is present at the arrow tail and the corresponding zone of
the machine line diagrams is present at the arrow head. The
inspection sheets contain handwritten arrows which make the
detection task difficult using traditional mathematical models.
Hence, we are utilizing deep neural network models to learn
the arrow structure. This is performed in two steps: first, we
find the Region of Interest (ROI) and then we localize the
arrow head and tail points. ROI consists of a rectangular
boundary around the arrows in the inspection sheet. We have
trained a Faster-RCNN [2] model on a set of inspection sheets
to detect all the arrows. We observed that there exists situations
where two or more arrows lie just next to each other, resulting
in multiple arrows in the same ROI. This scenario creates

confusion for arrow head and tail localization. To circumvent
this problem, we trained a Faster-RCNN on partial arrows.
Partial arrows imply arrows with arrow heads and a part of
arrow shaft attached to head as shown in Figure 5(a). We
have used the trained Faster-RCNN model to find ROIs in
a given test inspection sheet. Further, we use the resultant
ROIs to localize arrow head and shaft end (i.e. arrow tail).
We have used a deep convolution neural network (CNN) based
regression [3] model whose architecture is shown in Figure 4,
to detect arrow head and tail key-locations. The details of the
model are given in Section IV. The CNN based regression
model predicts the pixel locations of the arrow head and tail
in the given sheet, from which we can derive the direction in
which the arrow is pointing. Some of the detected arrow tail
points are not exactly matched with actual tail points, but are
good enough for text mapping as explained in further sections.

3) Text Localization: In this step, we first remove noise like
unwanted and spurious text, bubbles etc. from the inspection
sheets. Due to the standardized format of inspection sheets,
a lot of things are irrelevant and repeated objects exist in
the sheets. Therefore, we remove this unwanted information
from every inspection sheet using background subtraction. It
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Fig. 4. Architecture of deep CNN based regression model used for localization of arrow head and tail. The input patch is the ROI extracted from the inspection
sheet by arrow detection method. Output is the detected keypoints for arrow head(green color) and tail(blue color).

is carried out using template matching, where the reference
template is subtracted from the test inspection sheet. Further,
we use morphological operation of median filter to remove
noise of tiny residuals. Once we have a pre-processed image,
we use connected components analysis to get bounding boxes
for all text segments and objects present in the inspection
sheet. Overlapping regions are removed using Non-Maximum
Suppression (NMS). Next, we apply empirically chosen upper
and lower threshold of 4000 and 100 square pixels, on the area
of these bounding boxes to get relevant text segments from the
inspection sheet. The thresholds are empirically defined and
are based on the image resolution. We may still get some
undesirable patterns after this step because of the presence
of a variety of unavoidable patterns. Hence, we use further
processing to get superior text segments during text mapping
as explained in Section III-B1.

B. Mapping

1) Text Mapping: To remove unwanted patterns in the
obtained text-proposals from Section III-A3, we use the arrow
tail points and the direction of arrows found in Section III-A2
and find the best Region of Interest for text (ROI-Text). It is
observed from inspection sheets that the text is most likely
to be present in the vicinity of arrow tail. Based upon this
observation, we filter out the text-regions which do not lie
in the vicinity of the arrow tail. We achieve this by using eu-
clidean distance based thresholding. The text proposals should
lie within empirically determined upper threshold (thu) of the
distance from the arrow tail, where thu = 150. Subsequently,
we apply flat clustering [17] with a cluster threshold of 1.2,
on the text proposals. We choose the cluster with its mean in
the opposite direction of arrow and closest to the arrow tail.
To achieve this, a sector of 120o on arrow tail, symmetrically

around line of arrow, is taken as allowed region for cluster
mean point (Refer Figure 5(b)). If we get multiple clusters
in this sector, the closest one from the tail is chosen, which
is considered to be the relevant text-region for the detected
arrow.

120°

Arrow Tail point

Arrow Head point

(a) (b)

Fig. 5. (a) Bounding box annotations for training Faster-RCNN on partial
arrows which contains arrow head and (b) Text-mapping using arrow-tail and
text-segments.

2) Zone mapping: For mapping of zone contours dis-
covered in Section III-A1 with corresponding text-regions
obtained from Section III-A3 in the inspection sheets, we
use the arrow head and direction to check if an arrow head
occurs inside any zone contour. We have used the Ray Casting
Algorithm [18] to find if the point lie outside or inside the
polygon contour. We assign the head point to the zone contour
which lie inside or touches its boundary. In cases where the
head point is not found to lie inside or at the boundary of any
contour, we extrapolate the head point in the arrow-pointing
direction until it lies inside some zone contour. If the arrow
head is at (xh, yh), unit vector in arrow head direction is (u, v)
then next extrapolated point(x1, y1) is given as:

(x1, y1) = (xh, yh) + α(u, v) (2)



where α is the step size. If size of α is small, more steps
are needed to reach inside a particular zone contour and if it is
large, then it may not be able to find the zone contour. So, we
have chosen a value of α = 30 which is the average distance
between center and boundary point of minimum area zone
contour in the sheet, which is logically an optimal step size.
Also in some cases, where the extrapolation takes more than
3−4 steps, the arrow is not exactly pointing in the direction of
the zone but its head is close to the boundary. In such cases,
the nearest zone from the head is mapped.

Using the above mentioned approaches for text and zone
mapping, the overall mapping of text to zone is performed
using the common arrow as a linker. It will be a one to one
mapping that addresses the objective of this paper.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

We have implemented our end to end pipeline on a dataset
of anonymized inspection sheets provided by a company
employing heavy machines. We have a total of 330 camera
scans of these inspection sheets and they are divided randomly
into disjoint set of 280 and 50 sheets. We have used 280
for training, finding templates, optimizing parameters and
training the end to end pipeline. The other set of 50 inspection
sheets is used for testing our approach. All sheets are scanned
using camera with same position, orientation and intrinsic
parameters. The resolution for each scan is 3210 x 2200.

B. Results and Discussion

The inspection sheet represents 8 different kinds of machine
structures. All these structures contain a total of 86 subparts
constituting different zones. Hence, we have 8 different ref-
erence templates. These are taken from a random image in
the train set. We achieved perfect template matching on the
complete test set and thus, our entire pipeline is error free with
respect to template matching.

The Faster-RCNN [2] is trained on the manually anno-
tated arrow images from the complete training set using the
Zeiler-Fergus network with random weight initialization. We
have trained this network for 20000, 10000, 20000 and 10000
epochs, respectively for Stage1 RPN, Stage1 RCNN, Stage2
RPN and Stage2 RCNN. Rest of the training settings are taken
as default as given in [2]. The accuracy is calculated as
the percentage of correctly obtained ROIs out of the total
arrows present in the test set. By keeping the confidence
threshold greater than 0.9 and Non Maximal Suppression
(NMS) threshold less than 0.05, our model is able to detect 171
correct ROIs out of 179 and 3 of the detections were obtained
as false positives. The ROI detection is assumed to be correct
if it fully contains the arrow head. The accuracy obtained for
Faster-RCNN is 95.5% (Refer Table I). The accuracy obtained
is significantly high and the 8 arrow regions which are failed to
be detected are among the ones having closely drawn arrows,
and hence affected by the strict NMS kept for maintaining
minimal false positive rate. Some examples of detected ROIs
are shown in Figure 6.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Results for arrow localization on ROI given by Faster-RCNN. Green
dot represents arrow head point and blue dot represents arrow tail point. The
detected point does not lie on the arrow always as can be seen in (c) and (f)

The cropped images of partial arrows, taken from the train
set is used to train our Deep CNN regression model. There
are total of 1000 arrow images, which are divided randomly
into 800 and 200 sets for training and validation, respectively.
The model comprises of 5 convolution layers with 8, 16, 32, 32
and 64 filters respectively, followed by 2 fully connected
layers. Each layer except the last fully connected layer uses
Rectified Linear Units (ReLU) as their activation function.
Each convolution layer is followed by a Max-pool layer of size
2 × 2. Each convolution layer uses 3 × 3 kernel sized filters.
The last fully connected layer has 4 hidden units representing
x and y location of the arrow head and tail. It uses a linear
activation function. We have used the Adam optimizer with
default hyper-parameters to optimize mean square error cost
function.

The number of epochs used in training is 500, where we
achieve the highest validation accuracy. The input size of our
images is 150×150. During testing, we obtained a mean square
error of 170.3 for a set of 171 ROI images obtained from
Faster RCNN. It implies a circle of radius of approximately
13 pixels in the image plane where the expected outcome
would lie. If manually annotated ROIs on test set are given,
the network gives mean square error of 148.1 for a set of 179
ROI images. It depicts the absolute error measure of our Deep
CNN regression model.

The output from Section III-A2 is used for text detection.
We measure the accuracy of the detected text box by finding
Intersection of Union (IoU) between annotated text box and
obtained text box. We choose IoU threshold to be 0.9. Using
this, we are able to extract 157 correct text boxes at arrow
tail out of 171 detected arrows (ROIs) by Faster RCNN.
This provides us an accuracy of 91.8%. With the manually
annotated ROIs and arrow head and tail points on test set, we
are able to extract 166 correct text boxes at the arrow tail out
of 179 arrows. This yields an accuracy of 92.7%, which is
the absolute error measure of text detection (Refer fourth row
of Table I).

Next, one-to-one mapping from arrows to the machine zones
is performed. We are able to map 162 arrows correctly to



their corresponding zones out of the 171 detected arrows,
thereby obtaining an accuracy of 94.7%. The accuracy of zone
mapping depends largely on the accuracy of head and tail point
localization. With manually annotated ROIs and arrow head -
tail points on the test set, we are able to map 178 arrows
correctly to their corresponding zone out of the set of 179
arrows. Hence according to the absolute error measure, it is
99.4% accurate as given in Table I.

It should be noted that the error at each step of the pipeline
gets cascaded into the next step, and thus the overall error is
a reflection of the cumulative error across every stage in the
pipeline. The final end to end accuracy, therefore, is expected
to be lower than the accuracy at any of the individual stages.
We have calculated the ratio of successful text-region zone
pairs with ideal text-region zone pairs present in the inspection
sheet. We define a successful text-region zone pair as the
number of detected text-region with IoU > 0.9 mapped to
arrows and subsequently to the correct zone. There are a total
of 149 successful cases out of 179 cases, and hence the end to
end accuracy is approx. 83.2%. We also evaluate the accuracy
of the final mapping, given annotated ROIs and arrow head
and tail points on test set. In this case, there are total 165
successful cases out of 179 total cases, i.e. 92.1% accurate as
shown in last row of Table I.

TABLE I
RESULTS AT EACH STAGE AND INDIVIDUAL COMPONENTS.

Results at Results of
each stage individual component

Method Successful Accuracy Successful Accuracy
Cases Cases

Arrow Detection 171 / 179 95.5% 171 / 179 95.5%
(Faster-RCNN)
Text Mapping 157 / 171 91.8% 166 / 179 92.7%
(Connected Components)
Zone Mapping 162 / 171 94.7% 178 / 179 99.4%
(Template Matching)
Text to Zone Mapping 149 / 179 83.2% 165 / 179 92.1%
(Overall Pipeline)

V. CONCLUSIONS AND FUTURE WORK

We have proposed a pipeline for the task of information
extraction from manually tagged machine inspection sheets.
Particularly, in the first stage of our pipeline, we suggest a
novel combination of a template matching method, a deep
learning based regression model and connected component
analysis, to localize each specific components of the machine
in the inspection sheet. In the second stage, we associate
machine zones to detected text segments from the previous
stage. The proposed method yields an accuracy of 83.2% at
the end of the pipeline. In future, we plan to improve the
proposed pipeline by utilizing more sophisticated and recent
techniques such as detection via a deep attention model. In
addition, it may be worthwhile to inject domain knowledge
like the kind of faults that each zone tends to experience and
eliminating cases for which a certain code or comment is not
valid for the corresponding zone, into the proposed pipeline.
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