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Abstract

Karyotying is the process of pairing and ordering 23
pairs of human chromosomes from cell images on the ba-
sis of size, centromere position, and banding pattern. Kary-
otyping during metaphase is often used by clinical cytoge-
neticists to analyze human chromosomes for diagnostic pur-
poses. It requires experience, domain expertise and consid-
erable manual effort to efficiently perform karyotyping and
diagnosis of various disorders. Therefore, automation or
even partial automation is highly desirable to assist tech-
nicians and reduce the cognitive load necessary for kary-
otyping. With these motivations, in this paper, we attempt to
develop methods for chromosome classification by borrow-
ing the latest ideas from deep learning. More specifically,
we perform straightening on chromosomes and feed them
into Siamese Networks to push the embeddings of samples
coming from similar labels closer. Further, we propose to
perform balanced sampling from the pairwise dataset while
selecting dissimilar training pairs for Siamese Networks,
and an MLP based prediction on top of the embeddings ob-
tained from the trained Siamese Networks. We perform our
experiments on a real world dataset of healthy patients col-
lected from a hospital and exhaustively compare the effect
of different straightening techniques, by applying them to
chromosome images prior to classification. Results demon-
strate that the proposed methods speed up both training and
prediction by 83 and 3 folds, respectively; while surpassing
the performance of a very competitive baseline created uti-
lizing deep convolutional neural networks.

1. Introduction
Conventionally, karyotyping of chromosomes is per-

formed during the metaphase stage of cell division where
the condensed chromosome images are Giemsa stained un-
der a light microscope [24]. The Giemsa staining produces
visible karyotypes where unique bands of dark and light
color appear that help in distinguishing different chromo-
somes. A normal human cell has 46 chromosomes orga-
nized in 23 pairs of chromosomes, out of which 22 pairs

are called autosomes and the 23rd pair is the pair of sex
chromosomes (X and Y). Karyotyping involves ordering of
chromosomes in a standard format (i.e. enlisting into 24
categories) called a karyotype as shown in Figure 1.

(a) (b)
Figure 1. (a) Cell spread image during metaphase stage and (b) the
standard and desired karyotyped image.

Doctors experienced in cytogenetics analyze micro-
photographed chromosome images to diagnose genetic dis-
orders, specific birth defects, and cancers which arise due to
various translocations, deletions or inversions [5]. Even af-
ter years of expertise, considerable manual effort and time
is required to classify and order various types of chromo-
somes in order to produce a karyotyped image [24, 38].
With these motivations, this paper explores deep learning
based methods for chromosome classification that can ex-
pedite the task of karyotyping, if not, automate it entirely.
It is worth noting that such a system can seamlessly be em-
ployed to assist expert doctors and save their valuable time.
In addition, research on karyotyping is also attractive be-
cause of its unique requirement of embodying human visual
perception skills along with the domain expertise utilized by
doctors [38]. As a result, karyotyping or chromosome clas-
sification is more specialized in comparison to any standard
image classification task.

Although, deep learning methods have successfully
managed to achieve state-of-the-art results for numerous
computer vision tasks [31, 35, 19], it still continues to pose
challenges in settings where data is limited [37]. Several
tehniques have been proposed to adapt these models to low
data regimes, under the umbrella of one-shot / few shot
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learning [10, 32]. In particular, Siamese Networks [17]
have made significant strides towards improved classifica-
tion performance, on multiple benchmarks. Considering the
empirical success of Siamese Networks and the practical
settings where data for chromosome classification is scarce,
we propose Siamese Networks to classify chromosomes.

More specifically, we submit that Siamese Networks
preceded via a pre-processing step of straightening chro-
mosomes [15, 16], is effective for the task of automatic
chromosome classification. The rationale behind the pre-
processing step of straightening of chromosomes, as op-
posed to an end-to-end approach is two fold: a) chromo-
somes obtained after Giemsa staining are found to be bent
in different orientations which may deteriorate the perfor-
mance of the classifier [2], b) it alleviates the requirement of
learning representations invariant to different bending ori-
entations. In particular, we deploy two straightening algo-
rithms, namely, straightening via medial axis [15] followed
by a manual rectification using the crowd for some selec-
tive cases that were difficult to automate, and straighten-
ing via projection vectors [16]. Subsequently, straightened
chromosomes are fed into the Siamese Networks to perform
automatic chromosome classification. During the course of
above mentioned explorations, this paper makes the follow-
ing contributions:

• We propose Siamese Networks for learning chromo-
some similarity for the task of automatic classification
as described in Section 3.2.

• We employ a simple yet effective training method for
Siamese Networks that advocates sampling from the
dissimilar pairs in the Siamese training set to account
for the skewed distribution of similar and dissimilar
pairs for multi-class classification. The resulting tech-
nique yields an acceleration of 83 folds in training.

• A Multi-layer Perceptron (MLP) based feedforward
network classifier is trained on the embeddings ob-
tained from Siamese Networks, as opposed to a nearest
neighbour search; thereby making the prediction step
of Siamese Networks three times faster.

• We explore two straightening based pre-processing
methods and comparatively benchmark Siamese Net-
works against Deep Convolutional Neural Networks
(Deep CNN) [30] for the task of chromosome classi-
fication.

The remainder of the paper is organized as follows: Sec-
tion 2 details an overview of related work for chromo-
some karyotyping. In Section 3, we present the proposed
methodology, where we discuss straightening methods used
for pre-processing and Siamese Networks for classifica-
tion. Thereafter, in Section 4, we present details about the

dataset, the training procedure adopted and a discussion on
the obtained results. Finally, we place important conclu-
sions and potential future research avenues in Section 5.

2. Related Work
Karyotyping of chromosomes during metaphase can be

viewed as a task composed of two steps, namely, segmen-
tation and classification of individual chromosomes. In
the recent past, motivated from the fact that manual kary-
otyping is laborious and time-consuming; researchers have
proposed computational methods for automatic karyotyp-
ing [4, 5] with results generally reported on very small
datasets. While there exists numerous methods for au-
tomated segmentation [23] and classification of chromo-
somes [2, 25, 6], the unpredictable shapes and appearances
of chromosomes due to their non-rigid nature, still continue
to pose challenges for segmentation [4] as well as for clas-
sification [26, 1]. However, in this paper, we restrain our fo-
cus only on the step of chromosome classification for Kary-
otyping, with the assumption that we have been provided
segmented images of individual chromosomes.

Research studies have revealed that the critical factor
which impedes the performance of direct application of au-
tomatic chromosome classification methods, is the curved
and bent orientations arising from the non-rigid nature of
chromosomes [15, 16, 27]. Therefore, we have considered
chromosome straightening as a pre-processing step for all
the explored classification methods. [15] proposed a method
to straighten chromosomes using their medial axis which is
extracted by a thinning procedure operated on the binary
version of the chromosome image. While the authors ad-
vocate its robustness for all types of chromosomes (bent,
curved, highly-curved, multiple bends), this method fails
if the underlying thinning procedure [14] yields a medial
axis with spurious branches. We attempt to circumvent this
issue by using a crowdsourcing platform to obtain correc-
tions for chromosomes where we get medial axis with spurs
/ branches as a result of thinning. Authors in [16] and [27]
have proposed another straightening method for chromo-
somes which utilizes vertical and horizontal projection vec-
tors of binary images of the chromosomes obtained at var-
ious rotation angles, followed by stitching of the two arms
and extrapolation of missing pixels using mean of neigh-
bourhood pixel values.

While we utilize crowdsourcing for a small portion of
our task of chromosome classification, crowdsourcing has
been actively contributing in many ways to generate nec-
essary annotations for various similar tasks such as image
segmentation [29], mitosis detection [3] and nucleus detec-
tion [13]. For a more comprehensive view of crowdsourcing
for computer vision, we refer our readers to [18, 33].

Though the earlier attempts of applying artificial neural
networks for chromosome classification demonstrated their



Figure 2. The flow-diagram of chromosome classification using Siamese-Networks: Chromosome images are pre-processed using two
straightening algorithms - SMAC [15] followed by crowdsourcing for medial axis annotations and SPV [27]. The pre-processed images
are then fed to Siamese Networks for classification. The architecture of the Base CNN used in Siamese-Networks is shown in Figure 5.

applicability [9], they were primarily based on manually de-
signed features and feature selection methods [20]; similar
to concurrent state-of-the art methods for image classifica-
tion [21]. However, with the advent of deep learning tech-
niques, Deep CNN [30] and similar architectures have sur-
passed the performance of conventional methods by a sig-
nificant margin [19, 35, 31]. Further, these methods require
a large amount of labeled data and fail to yield superior per-
formance in the more practical settings where labeled data
is scarce [10]. Therefore, researchers have proposed sev-
eral architectures to handle limited data scenarios for image
classification [17, 37, 28]. The arena of such one-shot or
few shot learning methods is proliferating rapidly.

3. Proposed Method

This section provides details on the proposed method
for the task of chromosome classification. The proposed
method comprises of two stages: a) pre-processing images
utilizing straightening methods and b) classifying chromo-
somes via Siamese Networks. In the first stage, we perform
straightening on the available chromosome images utilizing

the Straightening via Medial Axis extraction and Crowd-
sourcing [15] technique and the Straightening via Projec-
tion Vectors [27] technique, as explained below in Sections
3.1.1 and 3.1.2. Thereafter, processed chromosome images
are fed into Siamese Networks to classify chromosomes as
detailed in following Section 3.2. A detailed flow-diagram
of all the steps in our proposed method is provided in Fig-
ure 2.

3.1. Pre-processing: Straightening Methodologies

3.1.1 SMAC: Straightening via Medial Axis extraction
and Crowdsourcing

We have attemped to straighten chromosomes via Medial
Axis (MA) extraction [15] which is applicable to all
kinds of chromosomes. We have also considered manual
corrections for MA extraction through crowdsourcing for
some chromosomes where automated MA extraction failed.
A flow diagram of the same is also outlined in Figure 2.
Firstly, MA is automatically extracted using a standard
thinning algorithm on the binarized chromosome images
[14], which is succeeded by a Medial Axis smoothening



using a median filter of size 15 × 15. Considering MA is
extracted using conventional thinning, some pixels are lost
at both the ends of chromosomes, therefore smoothed MA
is extended by 30 pixels on both the ends by calculating the
slope of the MA using the last five pixels. Subsequently,
the straightened chromosome is obtained by sampling the
intensity of the original chromosome image over multiple
closely located perpendicular lines on the modified MA.
Next, pixels obtained after sampling are mapped into a
matrix as rows to produce a straightened chromosome
as shown in Figure 4 (a). However, such a method of
straightening chromosomes is heavily dependent on MA
extraction and sometimes the extracted MA has many
spurious branches potentially due to some limitations of the
thinning algorithm. For such cases, we employ the crowd
for manual annotations of MA as described below:

Crowdsourcing for MA Extraction: We employ an in-
ternal crowd to manually extract / draw the MA line over
chromosome images. Considering the lack of expertise of
the crowd, it is likely that some workers may provide in-
correct annotations. Hence, we used the Spammer Identi-
fication and Consensus [33] to validate the quality of ob-
tained annotations. These measures, as discussed below,
increase the cost marginally but ensure quality which is es-
sential given the criticality of MA extraction.

• Spammer Identification: Spammers are those work-
ers who provide completely spurious annotations. We
have observed that annotations generated by spammers
are minimally correlated with the chromosome region.
Therefore, our filtering criteria for spammer identifica-
tion is based on the intersection of chromosome-pixel
locations (Cp) and annotation-pixel locations by work-
ers (Wp). Specifically, a worker is identified as a spam-
mer iff ||Cp ∩Wp||0 ≤ α ∗ ||Wp||0, where α is set to
0.6.

• Consensus: Every chromosome image is assigned to
multiple workers to draw the MA of the chromosome.
If there are K different workers then the most proba-
ble MA is the one which has the most proximity with
the other MA drawn by K − 1 workers. Assuming a
medial axis Xi is drawn by ith worker, we represent
its normalized Hausdorff distance [12] from the me-
dial axis drawn by the jth worker as Dij . We select
consensus MA corresponding to the lth worker which
is determined according to the following Equation 1.

l = argmin
i

K∑
j=1,j 6=i

max{Dij , Dji} (1)

The Hausdorff distanceDij is defined as the maximum
of all the distances from a point in one set to the closest

point in the other set. Dij is directional as Dij 6= Dji,
therefore we apply the max operation in Equation 1.
A sample of MA annotations and the selection of final
annotation using census is shown in Figure 3.

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5 Final

Figure 3. Sample MA annotations provided by the crowd for a
chromosome image and the selected MA (Final) using consensus.

3.1.2 SPV: Straightening via Projection Vectors

The SPV algorithm [27] begins with the binarization of a
chromosome image and uses a technique to determine if the
chromosome is bent or straight as shown in Figure 2. Since
a tight bounding box of a straight chromosome contains less
blank area as compared to the area for bent chromosomes in
a binarized image, we have used a Whiteness value (V) [30]
which is defined as the sum of white pixels divided by the
total area of the tight bounding box of a binarized chromo-
some. We label the chromosomes with V ≤ VT as bent
chromosomes and they are sent for further straightening,
where the value of whiteness threshold VT is determined
empirically.

Figure 4. Examples showing results of straightening algorithms -
(a) SMAC and (b) SPV.

After bent chromosomes are recognized, we compute the
horizontal projection vectors of the step-wise rotated binary
image and locate the bending centre and bending axis of
the bent chromosome. The global minimum point in be-
tween two globally maxima points of the horizontal projec-
tion vector with their amplitudes almost equal corresponds
to the bending centre of a curved chromosome. The hor-
izontal line passing through the point on the chromosome
image coincident with the global minimum point in the hor-
izontal projection vector represents the bending axis of the



chromosome. The chromosome image is split into two sub-
images along the bending axis, containing one arm each.
Two sub-images are then rotated while calculating the ver-
tical projection vector at each rotation step to align both the
arms for stitching together. Due to the particular shape of
each arm of the chromosome, the vertical projection vector
will demonstrate minimum width if the arms are in the ver-
tical position inside the sub-image. Subsequently, both the
sub-images containing aligned arms are connected to pro-
duce the final straightened chromosome.

The resulting straightened chromosome contains some
missing pixel values after the stitching operation which are
filled with the mean value of neighbourhood pixels at the
same horizontal level. Some examples of bent chromo-
somes straightened via SPV are shown in Figure 4(b).

3.2. Classifying Chromosomes via Siamese Net-
works

Siamese Networks are comprised of twin neural net-
works which learn to predict whether or not a pair of in-
put images are similar or dissimilar. These twin neural
networks are conjuncted through an energy function that is
computed using a metric between the representations learnt
at the highest layer. Since the model parameters for twin
networks are tied, they are bound to learn the same trans-
formation hence making it very likely that similar images
will be mapped closer to each other in the learned feature
space. For example, if a pair of chromosomes with very
similar size, position of centromere, and banding patterns
is fed to the Siamese Network then their feature representa-
tions are likely to be closer. Hence, energy at the top layer
will be lower; as a result of which they will be potentially
predicted as a similar pair. Another aspect of Siamese Net-
works is that it is symmetric with a top conjoining layer
making it invariant to possible permutations between input
images and twin networks.

Figure 5. The base CNN architecture utilized in Siamese Network.

Our Siamese Network exploits a standard CNN as the
base network. For each of the twin networks, let L be the
number of layers with Nl units in layer l; h1,l and h2,l de-
note the hidden vector representations in layer l for the first
and second twin, respectively. More specifically, the base
CNN model utilized for twin networks has two convolu-
tional layers consuming a single channel with filters of sizes
constrained to multiples of 16. Each convolutional layer op-
erates on a stride of 1 and is followed by a max pool layer
of size 2 × 2, which is also operating at a stride of 1. All
convolutional layers in our base CNN have Rectified Lin-
ear Units (ReLU). The output of the final max pool layer is
flattened into a vector and fed into the succeeding fully con-
nected dense layer having sigmoid units. The dense layer is
followed by the computation of an energy function over the
feature representations of highest level. A schematic dia-
gram of the base CNN is provided in Figure 5.

To learn Siamese Networks, we optimize the contrastive
loss function [8] with respect to the model parameters. The
contrastive loss function ensures not only that the energy
for a pair of inputs belonging to the same class should
be low, but also that the energy for a pair from differ-
ent classes is high. Unlike conventional machine learn-
ing algorithms where the loss function is calculated as the
sum over samples, the loss function here is computed over
pairs of samples as mentioned in Equation 2. Let S =
((X1, y1)...(XN , yN )) represent the training dataset, where
Xi is an image with class yi. Also, for a pair of images Xi

and Xj , the binary label yij is assigned to 1 if both Xi and
Xj are similar, i.e. if they belong to the same class, other-
wise it is set to 0. Then, the contrastive loss function for our
Siamese Network model can be defined as follows:

L(S,W ) =

N∑
i=1

N∑
j=i

EW (yij , Xi, Xj) (2)

where EW (yij , Xi, Xj) is an energy function between a
pair of images Xi and Xj , defined based on euclidean dis-
tance; andW represents model parameters. More precisely,
EW (yij , Xi, Xj) is calculated as in Equation 3.

EW (yij , Xi, Xj) =
1

2
× (1− yij)× (DW (Xi, Xj))

2

+
1

2
× yij × (max{m−DW (Xi, Xj), 0})2

(3)

where m is the margin and DW (Xi, Xj) is the eu-
clidean distance between the representations learnt by the
base CNNs of the Siamese Network. DW (Xi, Xj) is com-
puted as follows:

DW (Xi, Xj) =‖ h1,L(W,Xi)− h2,L(W,Xj) ‖2 (4)



The model parameters W are shared by both of the twin
networks in the Siamese Network, resulting in fewer pa-
rameters to learn. As a consequence, Siamese Networks
require relatively less data to train and are less susceptible
to overfitting. For prediction, typically a k-nearest neigh-
bour (KNN) approach is utilized in the embeddings space
learnt by the base CNN. Therefore, prediction time is large
as it requires comparison with all the training samples, un-
like a standard classification model such as an MLP classi-
fier. Further, applying KNN requires training embeddings
obtained from Siamese Network to be retained in memory,
increasing the memory footprint of the model significantly.
To circumvent these issues, we have applied a secondary
training stage as depicted in Figure 2. During the second
training stage, we train a two layer MLP based feedforward
network classifier on top of the embeddings obtained from
the base CNN. With this, the requirement to keep embed-
dings corresponding to training data is obviated, addition-
ally the prediction step of an MLP is significantly faster.

Next, we observe that the contrastive loss function as
mentioned in Equation 2, has a relatively higher number of
dissimilar pairs in comparison to similar pairs; a scenario
similar to skewed data distribution over classes [11]. To
address this issue, we define a new modified loss function
L̂(S,W ), as mentioned in Equation 5:

L̂(S,W ) =

N∑
i=1

N∑
j=i

EW (yij , Xi, Xj)× S(yij , Xi, Xj) (5)

where EW (yij , Xi, Xj) is computed as mentioned in
Equation 3. S(yij , Xi, Xj) is an indicator function to de-
cide whether or not a pair of sample images is to be in-
cluded in the training set. Note that, such a function can be
precomputed and the pairwise energyEW (yij , Xi, Xj) will
be computed only for the cases that are part of the training,
without increasing the computation overload significantly.
For simplicity, we considered three scenarios. First is when
S(yij , Xi, Xj) is set to 1, which reduces to the loss function
defined above in Equation 2. Second is where we randomly
sample S(yij , Xi, Xj) from a Bernoulli distribution, and re-
duce the ratio of dissimilar to similar pairs equal to R while
including all the available similar pairs. If α and β are the
number of similar and dissimilar pairs then the probability
of S(yij , Xi, Xj) = 1 is defined as follows in Equation 6:

Pr(S(yij , Xi, Xj) = 1) =

{
1 ∀yij = 0
R×α
β

∀yij = 1
(6)

Next in the third case, in addition to sampling
S(yij , Xi, Xj), we have taken the same number of dissimi-
lar pairs of images from all the possible
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C2 different class
label pairs, thereby balancing the distribution not only be-
tween the similar and dissimilar pairs, but also the distri-

bution of dissimilar pairs across
24

C2 different class label
pairs. Though, we confine our exploration to make use of
the second and third cases only once to select the training
set, it will be trivial to extend their usage at the start of ev-
ery epoch permitting the balanced training in addition to the
usage of all the available possible pairs of images.

4. Experiments
This section starts with the description of the dataset col-

lected from a hospital in subsection 4.1. Later in subsec-
tion 4.2, we explain the experimental setup utilized to con-
duct our experiments. Subsection 4.3 presents the obtained
results while discussing the effectiveness of the proposed
Siamese Networks for the task of chromosome classifica-
tion. Next in Subsection 4.4, we visualize embeddings ob-
tained from Siamese Networks, to ascertain their efficacy in
achieving the separability necessary for the classification.

4.1. Dataset

To conduct our experimentation, we have collected chro-
mosome images of real world healthy patients from a hos-
pital. Total number of chromosome images are 1740 which
are randomly divided into a group of 1296, 235 and 209; for
training, validation and test sets, respectively. These images
were segmented manually and a subset was validated with
doctors to ensure that the label for each segmented individ-
ual chromosome image is identifiable. Each image is as-
signed a label from the 24 categories shown in Figure 1(b).
For all the experiments, the resolution of chromosome im-
ages was set to 60×60 in grey-scale.

4.2. Training Details

All models were trained using stochastic gradient de-
scent with a learning rate in {10−1, 10−2,10−3}, Nestrov
momentum value set to 0.99, weight decay in {10−2,10−3}.
In addition, we apply dropout [34] to regularize the network
training, and provide a sufficiently large number of epochs
while training each model. Specifically, models in rows 1-
3, row 4, rows 5-6, row 7, rows 8-11 and rows 12-15 of
Table 1 were trained for 2000, 5000, 2000, 200, 25 and 100
epochs, respectively. We observe validation results at each
epoch and track model parameters corresponding to highest
validation accuracy, which were later used for testing. The
margin valuem of the Siamese Networks was set to 0.5. All
methods are implemented using Theano [36] and Keras [7].

4.3. Results and Discussion

This section presents the obtained empirical results to
validate the contributions mentioned above in Section 1.
Table 1 shows percentage testing accuracy, training time
(shown as Epochs×PET, where Epochs and PET refer to
the number of epochs at which best model parameters are



Network Architecture Similar:Dissimilar (1:R) Accuracy Epochs × PET Prediction
1. Two Layer MLP – – – 59.7% 1921×0.3 sec (0.16 hrs) 4.088 sec
2. Two Layer MLP + SMAC – – – 67.9% 1871×0.3 sec (0.16 hrs) 4.088 sec
3. Two Layer MLP + SPV – – – 72.3% 1791×0.3 sec (0.15 hrs) 4.088 sec
4. Deep CNN – – – 68.5% 4700×4.1 sec (5.35 hrs) 12.085 sec
5. Deep CNN + SMAC – – – 78.4% 1832×4.1 sec (2.09 hrs) 12.085 sec
6. Deep CNN + SPV – – – 83.7% 1957×4.1 sec (2.23 hrs) 12.085 sec
7. Siamese Network + Nearest + SPV 36.6K:817K (Random) 85.6% 155×2844 sec (124.17 hrs) 15.088 sec
8. Siamese Network + MLP + SMAC (Avg) 36.6K:73.2K (Random) 78.5±0.8% 18.2×365 sec (1.84 hrs) 4.760 sec
9. Siamese Network + MLP + SMAC (Max) 36.6K:73.2K (Random) 79.4% 19×365 sec (1.92 hrs) 4.760 sec
10. Siamese Network + MLP + SPV (Avg) 36.6K:73.2K (Random) 81.3±0.7% 17.4×365 sec (1.76 hrs) 4.760 sec
11. Siamese Network + MLP + SPV (Max) 36.6K:73.2K (Random) 83.8% 18×365 sec (1.83 hrs) 4.760 sec
12. Siamese Network + MLP + SMAC (Avg) 9K:18K (Balanced) 78.6±0.9% 62.8×90 sec (1.57 hrs) 4.760 sec
13. Siamese Network + MLP + SMAC (Max) 9K:18K (Balanced) 80.4% 63×90 sec (1.58 hrs) 4.760 sec
14. Siamese Network + MLP + SPV (Avg) 9K:18K (Balanced) 83.3±1.2% 61.2×90 sec (1.53 hrs) 4.760 sec
15. Siamese Network + MLP + SPV (Max) 9K:18K (Balanced) 85.2% 60×90 sec (1.50 hrs) 4.760 sec
16. Con-Siamese Networks + MLP + SMAC 9K:18K (Balanced) 79.8% – –
17. Con-Siamese Networks + MLP + SPV 9K:18K (Balanced) 84.6% – –

Table 1. Results – Percentage test accuracy, training time (mentioned as Epochs×PET, where Epochs and PET represents number of epochs
at which the best model parameters are obtained and per epoch time respectively), and prediction time (mentioned as Prediction), for the
proposed Siamese Networks along with the multiple baselines created using a Deep CNN for the automatic chromosome classification.

obtained, and per epoch time, respectively), and prediction
time for test samples (shown as Prediction), for the pro-
posed Siamese Networks along with the multiple baselines
created using Two Layer MLP and Deep CNN, for the task
of chromosome classification. Our first set of baselines
(rows 1-3) are from a Two Layer MLP based feedforward
neural network classifier. In Table 1, rows 4-6 mention re-
sults of the Deep CNN, which comprises of 2 convolutional
layers with 64 filters, a max pool layer, a dropout layer with
0.25 probability, 2 convolutional layers with 32 filters, max
pool layer, dropout layer with 0.25 probability, 2 convolu-
tional layers with 16 filters, max pool layer, dropout layer
with 0.25 probability, 2 dense layers of size 1024 and 512,
dropout layer with 0.5 probability, dense layer of size 24.
All filters in convolutional and max pool layers are of size
3×3 and 2×2 respectively. The activation units for convo-
lutional and dense layers have ReLU and sigmoid as non-
linear transformations respectively. For both Two Layer
MLP and Deep CNN, their SMAC and SPV variants out-
perform no straightening variants by a significant margin
of absolute improvement ranging between 8.2% – 15.2%,
making it evident that straightening is vital.

Next, row 7 of Table 1 reports the performance of the
proposed Siamese Network + Nearest + SPV which is a
Siamese Network applied on the chromosomes processed
using the SPV method explained in Section 3.1.2. This
method achieves an absolute and relative improvements
of 1.9% and 11.65% respectively, when compared with
the best baselines obtained utilizing a Deep CNN network.
However, training and prediction timings of this network
have increased to 124.17 hrs and 15.088 sec respectively,

which are intractably high. Such a huge training time makes
it unwieldy for practitioners to explore different choices of
hyper-parameters. Moreover, its hefty prediction time is not
viable enough for its deployment for a real-time use-case.

In Table 1, in rows 8-11, Siamese Networks are followed
by an MLP based two layer feedforward networks, which
can predict 3.16 folds faster than the Siamese Network and
nearest neighbour model. For all of these three cases, we
have downsampled dissimilar image pairs by a factor of
11.62 (to reach 1:2 ratio of similar and dissimilar pairs, i.e.
R = 2 which is mentioned as Random in Table 1). Hence,
per epoch time is tremendously reduced and training time is
made tractable. To account for the downsampling bias, we
have trained 10 models on different sets of dissimilar image
pairs. We report time for the average cases as Siamese Net-
work + MLP + SMAC (Avg) & Siamese Network + MLP
+ SPV (Avg), and best cases as Siamese Network + MLP
+ SMAC (Max) & Siamese Network + MLP + SPV (Max),
respectively. While these cases ameliorate the problem of
intractable training and prediction time, their accuracy is
lower than the Siamese Network + Nearest + SPV, which is
when Siamese is trained on the all possible similar and dis-
similar pairs. Still, it is noteworthy that even with a down-
sampling of 11.62 factor in dissimilar pairs of the train-
ing set, the best cases of the Siamese Network exceed the
performance of the Deep CNN for the corresponding pre-
processing methods (i.e. row11 > row6 and row9 > row5);
indicating the superiority of the proposed Siamese Network
based method for chromosome classification.

After that, we downsample the training set leaving a
mere 24.5% and 2.2% of all the possible similar and dis-



similar pairs respectively, (mentioned as Balanced) in the
12-13 rows of Table 1. As a consequence of that, train-
ing time is reduced further. Also, the accuracy is improved
potentially because of the performed balancing in the train-
ing set across different pairs of classes. Again, we report
results of the average and best cases estimated using the
performance obtained by training 10 models. One must no-
tice that training time is improved to an extent where it is
smaller than that of Deep CNN while maintaining the supe-
rior performance of Siamese Networks (e.g. see row 15 of
Table 1, i.e. Siamese Network + MLP + SPV (Max)).

Following this, we conduct another experiment in which
embeddings obtained from all the previously trained 10
Siamese Networks are concatenated and fed into a two layer
MLP network, which is termed as Con-Siamese Networks
+ MLP + SMAC and Con-Siamese Networks + MLP +
SPV for both SMAC and SPV methods, respectively. Con-
Siamese Networks + MLP + SPV yields an accuracy of
84.6% outperforming all the three strong baselines of Deep
CNNs, a yet another validation showing that Siamese Net-
works have potential to outperform Deep CNN models.

4.4. Visualizing Siamese Embeddings

To probe the embedding representations learnt by
Siamese Networks, we compute hidden representations cor-
responding to all the chromosomes present in the test set.
We have utilized model parameters from the Siamese Net-
work + MLP + SPV (Max) method mentioned in Table 1
and applied t-SNE [22] with default settings, to reduce
the dimensionality of hidden representations to two dimen-
sions. The visualization is depicted in Figure 6.

In Figure 6, it is interesting to observe that chromo-
somes of type 9 and 23 (denoted as 5 and �) as well as
chromosomes of type 22 and 19 (denoted as ? and ), are
closely embedded as they also have similar visual appear-
ance, which can be observed in Figure 1 (b). Besides that
chromosomes of type 1 and 19 (denoted as 4 and ) are
far apart in the obtained visualization as they are very dif-
ferent from each other. Such a behaviour of the learned
embedding representations makes it apparent that Siamese
Networks have indeed incorporated visual semantic infor-
mation, needed to perform chromosome classification.

5. Conclusions and Future Work
We started by motivating the task of automatic chromo-

some classification, a necessary and critical step for kary-
otyping. Further, we have collected a dataset of real world
healthy patient chromosomes to carry our experimentation.
Next, considering the practical settings where data is lim-
ited, we have proposed Siamese Networks for chromosome
classification. We demonstrate that a vanilla Siamese Net-
work surpasses the performance of multiple strong base-
lines created using Deep CNN. In addition to that, we

20 15 10 5 0 5 10 15 20 25
20

10

0

10

20

30

10

7

21

9

19

4

18

10

22

17

10

24

6

21

3

22

2

1

14

16

18

19

18

13 23

20

16

6

12

10

10

4

9

5 6

15

21

9 3

24

8

9
8

9

5

17

18

23

1

75

11

7
2

10

15

11

3

20

19
18

11

7

23

4

5

11

7

19

21

10

8

17

1

15

19

5

16

11

16

22

6

12

1

8

13

24

9

13

20

3

18

4

24

8

2

5

22

21

21

6

19

1215
15

1

14

20

19

20

19

15

6

13

20

17

8

19

22

22

14

3

11

6

13

14

21

18

15

7

17

16

1

1

22

13

2

1214

16

4
2

4

18

23

8

1

20

20

6

12

17
16

11
3

24

5

14

8

22

4

22

15

6

13

5

23

9
23

20

15

8

4

16

5

16

7

3

9

24

7

9

17

14

2

10

18

17

10

13

6

14 11

21

3

7

12

3

17

12

2

12

11

14

21

4
2

13

12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 6. Visualization of embeddings for chromosomes in the test
set obtained after reducing their dimensionality to two, using t-
SNE [22] method, on the representations learned by the model
corresponding to row 15 of Table 1. Figure best viewed magnified.

suggested simple and yet effective methods to augment
Siamese Networks thereby expediting their training and
prediction steps by 83 and 3 folds respectively, while main-
taining the superior performance accomplished by vanilla
Siamese Network.

Looking ahead, we believe that it will be interesting to
train an ensemble of Siamese Networks, such that each
Siamese Network learns a behaviour that is complemen-
tary to the remaining networks of the ensemble. The re-
sults obtained by concatenating embeddings from multiple
Siamese Networks are not very encouraging, as we have not
enforced these networks to be complementary, through any
of the available training methods. We would like to empha-
size that such an ensemble will not be hampered by training
duration as base networks can be parallelized trivially.
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