
BLISS: A Billion scale Index using Iterative Re-partitioning
Gaurav Gupta

∗

Rice University, Texas, USA

Tharun Medini

ThirdAI Corp., Texas, USA

Anshumali Shrivastava

Rice University & ThirdAI Corp., Texas, USA

Alexander J. Smola

Amazon Web Services, California, USA

ABSTRACT
Representation learning has transformed the problem of informa-

tion retrieval into one of finding the approximate set of nearest

neighbors in a high dimensional vector space. With limited hard-

ware resources and time-critical queries, the retrieval engines face

an inherent tension between latency, accuracy, scalability, compact-

ness, and the ability to load balance in distributed settings. To im-

prove the trade-off, we propose a new algorithm, called BaLanced
Index for Scalable Search (BLISS), a highly tunable indexing

algorithm with enviably small index sizes, making it easy to scale

to billions of vectors. It iteratively refines partitions of items by

learning the relevant buckets directly from the query-item rele-

vance data. To ensure that the buckets are balanced, BLISS uses the

power-of-𝐾 choices strategy. We show that BLISS provides supe-

rior load balancing with high probability (and under very benign

assumptions). Due to its design, BLISS can be employed for both

near-neighbor retrieval (ANN problem) and extreme classification

(XML problem). For the case of ANN, we train and index 4 datasets
with billion vectors each. We compare the recall, inference time,

indexing time, and index size for BLISS with the two most popular

and well-optimized libraries- Hierarchical Navigable Small World

(HNSW) graph and Facebook’s FAISS. BLISS requires 100× lesser

RAM than HNSW, making it fit in memory on commodity machines

while taking a similar inference time as HNSW for the same recall.

Against FAISS-IVF, BLISS achieves similar performance with 3-4×
less memory requirement. BLISS is both data and model parallel,

making it ideal for distributed implementation for training and

inference. For the case of XML, BLISS surpasses the best baselines’

precision while being 5× faster for inference on popular multi-label

datasets with half a million classes.

CCS CONCEPTS
• Information systems→ Nearest-neighbor search; Top-k re-
trieval in databases; • Computing methodologies→ Supervised
learning by classification.

∗
gaurav.gupta@rice.edu

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/3534678.3539414

KEYWORDS
learning-to-index, billion-scale, search, classification, load-balance

ACM Reference Format:
Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J.

Smola. 2022. BLISS: A Billion scale Index using Iterative Re-partitioning. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3534678.3539414

1 INTRODUCTION
Information Retrieval (IR) focuses on mapping a given query 𝑞 to

one or a few items out of an extensive set (millions to billions) of

candidates. Beyond classical approaches that use techniques such

as an inverted index [36], recent approaches have shifted towards

retrieving nearest neighbors embedded in a dense embedding vector

space as a first stage. Examples of this can be found in algorithms

such as ColBERT for Question Answering [20], SLICE [14] (Bing

Search), and DSSM [13] (Amazon Search).

Despite being one of the most venerable problems in IR, Approx-

imate Near Neighbor (ANN) search continues to pose problems.

In the past decade, learning-based solutions for ANN have shown

significant promise in improving the entailing trade-offs between

inference time and recall. This is primarily because ANN search

and extreme classification (XML) share significant commonalities

that we exploit in this work. In ANN search, the goal is to map

a query 𝑞 to a small set of 𝑘 elements from a large inventory. It

could be viewed as a classification problem with an extremely large

set of possible labels. The only difference to extreme classification

from this point of view is that, in the latter, the labels are given as

part of the learning problem. In contrast, in ANN search, they are

implicitly defined by the geometry of the space.

1.1 Prior Approaches
For several years, space partitioning methods like Locality Sensi-
tive Hashing (LSH) [9] have been the backbone of ANN search.

However, these methods are unmindful of the distribution of vec-

tors, often leading to lop-sided partitions and long query times.

The popular K-Means algorithm serves as the long-standing data-

dependent clustering algorithm until the familiar issue of lop-sided

partitions in conjunction with long indexing times made it infeasi-

ble to scale to millions of points. Learning to Hash (LTH) [22, 33]
came to the rescue, wherein machine learning was first used to

learn space partitions based on the data distribution. One of the

notable works in this area of research is Spectral Hashing [34].

This algorithm learns to minimize the hamming distance between

the hash codes of vectors that are close in metric space.

A highlighting feature of Spectral Hashing is that it avoids learn-

ing degenerate partitions by adding a combinatoric regularizer

https://orcid.org/0000-0002-8302-4037
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3534678.3539414
https://doi.org/10.1145/3534678.3539414

KDD ’22, August 14–18, 2022, Washington, DC, USA Gaurav Gupta et al.

to balance the load in each partition. However, optimizing such

regularizers proves to be a challenge. Spectral Hashing remains

a space partitioning with simple hyperplanes, which prohibits it

from learning the complex manifolds that modern datasets exhibit.

In order to upgrade from pure space partitions to set partitions,

where vectors in one part need not be geometrically proximal, we

need to obtain a non-linear function 𝑓 that maps the query 𝑞 to a

reasonable sized discrete data partition. Additionally, if these parti-

tions (total 𝐵) are reasonably well balanced, 𝑓 reduces the search

space from 𝐿 to 𝐿/𝐵. It will ensure that we get a very relevant and

sufficiently small partition, irrespective of any query distribution

compared to index vectors’ distribution.

Learning to Index: In recent years, due to the abundance of behav-

ioral data like query to product purchases and query to ad clicks,

several algorithms [25] have been proposed to learn the partitions

directly from the associations between a query 𝑞 and the items. This

set of methods collectively opened up the space of Learning to
Index (LTI) [6, 7, 21]. While LTI can learn complex indexing func-

tions, it does not address the inherent load imbalance in the learned

partition and creates a power-law distribution in partition/buckets’

sizes. The fundamental cause of this imbalance is the power-law

distribution of data. Post partitioning, the frequently queried (or

similar) items tend to coalesce in large numbers into a few buckets,

leaving the infrequent ones in the remaining buckets. This imbal-

ance leads to higher inference times as we query heavy buckets

more often than the lighter ones.

This warrants research in load-balanced indexing schemes.

One of the early attempts in this regard is Balanced K-Means [23],

which has a higher construction time than vanilla K-means, thus

making it difficult to apply at scale. A recent noteworthy work

blends pre-creation of an index and LTI is NeuralLSH [8]. Neu-

ralLSH uses KaHIP [30], a balanced graph-partitioning algorithm to

partition all the item vectors. It then maps a query to the relevant

partition(s) via a neural network trained using soft labels (using

the partition centers’ distance with the query).

However, any balanced clustering approach to a power-law

dataset faces challenges: 1) We are forced to split two relevant

(close by) vectors into different clusters into dense regions. 2) In

sparse regions, we are forced to accommodate two irrelevant (dis-

tanced) vectors in the same cluster. We call this the ‘Curse of
Clustering’.

Over the past six years, small world graphs like HNSW [24]

and approximate distance-based methods like Vector Quantization

(VQ)[11] and Product Quantization (PQ) [16] have emerged as the

most scalable solutions to industry-scale problems. Graph-based

ANN methods like HNSW are efficient but have several limitations:

1) Due to the sequential nature of breadth-first-search traversal

for indexing and querying, HNSW is not trivial to parallelize. 2)

They are limited to standard distance metrics and do not generalize

easily to any learning-based retrieval problem where the metric

comes from the query-item relevance data. 3) They are designed

for efficiency on CPUs but are less suitable for GPUs, distributed ar-

chitectures, and secure computations (as quoted in [8]). 4) HNSW’s

humongous memory requirement is a well-known issue [10]. On

the other hand, libraries that are fine-tuned on VQ and PQ (like the

popular FAISS [18]) have much smaller indexes but are not very

precise. Given these limitations, many commercial applications

that deal with large-scale data are shifting again to learned data

partitioning schemes (LTI) as they potentially form accurate and

small indices.

The current semantic search pipeline still struggles with learning

embeddings from query-item relevance. It is a pairwise training

process [13] leading to a massive amount of training samples and

extended training time. Additionally, negative sampling techniques

have to be employed to prevent degenerate solutions, which only

exacerbate the problem for large output spaces. Directly learning

and indexing from query-item(label) relevance should be perfected

as it can be faster. This problem is the same as XML. In this context,

Parabel [29] is one of the primary algorithms that partitions the

label space into roughly equal sets via a balanced 2-means label

tree, where the label vectors are constructed using input instances.

Subsequent improvements like eXtremeText [35] and Bonsai [19]

relax the 2-way partitioning to higher orders of hierarchy. Another

recent work, SLICE [14], builds an ANN graph on the label vectors

obtained from a pre-trained network. It maps a query to the com-

mon embedding space during inference and performs a random

walk on the ANN graph to obtain the relevant labels.

In the end, the existing approaches decouple the partitioning step
from the learning step. Once a partition is created, it is fixed for the

rest of the process while we map the query using either centroids,

hashing, or a learned model. Like in NeuralLSH, the partitioning

process could be an off-the-shelf algorithm (like KaHIP).

1.2 Our Contributions
In this paper, we make the following algorithmic and theoretical

contributions with experimental corroboration.

• We propose a new learning-to-index algorithm - BLISS
(BaLanced Index for Scalable Search). It takes the iterative
training and re-partitioning approach, each time doing two

things: 1) learning to map a query to a relevant bucket and

2) re-allocating points to buckets each time in a balanced

way to achieve a superior index.

• We prove that BLISS achieves better recall than competing

algorithms while maintaining load balance.

• We index 4 billion scale datasets from the BigANN bench-

marks and a 100MM dataset and compare against the best

baselines HNSW and FAISS.

• For a similar recall and a competitive query time, BLISS

has a minimal index size (30x smaller than HNSW and 8x

smaller than FAISS), making it feasible to workwith low-spec

machines.

• We propose a variant of our method called BLISS+, wherein

we further bring down the in-memory index size to a few

MBs (6000x smaller than HNSW and 1500x smaller than

FAISS) with our data re-ordering approach.

• On two large Extreme Classification datasets, we outperform

the best baselines Parabel and SLICE on the precision with

≈ 5× faster inference.

BLISS is an illustration of the power of randomization. It breaks

the barriers which are impossible with a deterministic assignment.

It is possible to draw parallels between BLISS and clustering ap-

proaches like Balanced K-Means [23]. However, we break the afore-

mentioned ‘curse of clustering’ by using three design choices - 1)

BLISS: A Billion scale Index using Iterative Re-partitioning KDD ’22, August 14–18, 2022, Washington, DC, USA

D
ee

p
N

et
D

ee
p

N
et

D
ee

p
N

et
D

ee
p

N
et

D
ee

p
N

et

b=2 p=0.6

b=3 p=0.05

b=1 p=0.15

b=4 p=0.08

b=5 p=0.12

1

2

3

4

p=0.7

i

L-2

L-1

L

Tr
ai

ne
d

D

ee
p

N
et

b=1

b=2 Heavy

b=3 Light

b=4

b=5
Input

Vector

1

2

3

4

i

L-2

L-1

L

b=1

b=2

b=3

b=4

b=5

R=1

R=3
R=4

R=3
R=4 R=3

R=4

Labels
Labels

Softmax

bucket probabilities

Initial Random

Label Pooling

Training for

Bucket Scores Re-partitioning Labels

p=0.65

Step2Step1
IterateInitialize

Figure 1: LEFT: Initialization step - the vectors are pooled randomly into 𝐵 buckets using a 2-universal hash function. The above
figure shows only five buckets (while we have a few thousand in practice). MIDDLE: Training - We train 𝑅 fully-connected
networks on 𝑁 data points, where any bucket containing at-least one of the near neighbors is positive. RIGHT: After training
for a few epochs, the vectors are re-assigned to the buckets. Each vector is fed into the 𝑅 networks. We select the top-𝐾 buckets
from the respective outputs and assign the vector to the least occupied bucket. K=2 in the figure yields 2

𝑛𝑑 and 3
𝑟𝑑 buckets as

the top-K buckets. The light-green bucket is the lesser occupied one; hence, we assign the label to the 3
𝑟𝑑 bucket). A larger 𝐾

ensures perfect load balance, while it can also reduce the downstream precision and recall.

mapping a label to multiple clusters instead of a single assignment,

2) making a probabilistic interpretation of bucket assignments, 3)

making multiple and independent index repetitions starting from

random partitions. These choices allow us to have balanced par-

titions where the elements in each part bear a high degree of rel-

evance (we achieve this by aggregating outcomes from multiple

repetitions -Section 2.3).

2 BALANCED INDEX FOR SCALABLE SEARCH
BaLanced Index for Scalable Search (BLISS) begins with a random-

pooling-based index initialization followed by an iterative process

of alternating train and re-partition steps. We train 𝑅 independent

such indexes and use them for efficient item retrieval. Figures 1 and

2 illustrate our algorithm with a toy example of 5 buckets.

Notation: For a given dataset D, we denote a query vector by 𝑥

and the set of its near neighbors by 𝑦. Let 𝑁 be the total number of

train vectors, 𝑑 be the input vector dimension, and 𝐿 be the total

number of vectors/labels to index. 𝑅 is the number of repetitions

(independent indexes), and 𝐵 is the number of partitions in each

repetition. 𝑓 (.) is the learned deep-net model (we have 𝑅 such

models), and 𝐾 is the load balance parameter.

2.1 Initialization
We initialize the partitions randomly. For this, we use 𝑅 2-universal

hash functions ℎ𝑟 : [𝐿] → [𝐵], 𝑟 ∈ {1, 2, .., 𝑅}. The hash function

ℎ𝑟 (.) uniformly maps the 𝐿 vectors into 𝐵 buckets. As the pooling

is randomized, the buckets contain an equal number of labels in

expectation. The first part of figure 1 shows the initialization.

Algorithm 1: BLISS Index Training

Input: data (𝑥𝑖 , 𝑦𝑖) ∈ R𝑁×𝑑
and labels 𝑙𝑖 ∈ {1..𝐿};

for 𝑟 = 1 to 𝑅 do
Bucket(𝑙𝑖) = 𝑏 #Initial random bucket assignment

(Initialization);

for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑇 do
Learn bucket scoring- 𝑓𝑟 (𝑥𝑖) ∈ R𝐵 #Model training;

for 𝑙𝑖 = 1 to 𝐿 do
B𝐾 = topK(𝑓𝑟 (𝑙𝑖)) #Top K scoring buckets;

𝑏 =argmin Load(B𝐾) #Least loaded bucket;

Bucket(𝑙𝑖) = 𝑏 #Re-assignment of the label;

end
end

end

2.2 Alternative Training and Re-partitioning:
Training:We train a fully connected neural network to learn the

indexing function 𝑓𝑟 of a given point 𝑥 to 𝐵 buckets where 𝐵 ≪ 𝐿.

We have𝑅 independent partitions and thereby𝑅 independent neural

networks {𝑓𝑟 |𝑟 ∈ [1, 2, .., 𝑅]} (We use 𝑅 = 4 in our experiments).

We are effectively solving a classification problem using the cross-

entropy loss: L(𝑥,𝑦, 𝐵) = −∑𝐵
𝑏=1

𝑦𝑏 log (𝑝𝑏) + (1−𝑦𝑏) log(1−𝑝𝑏),
by providing 𝐵 softmax scores (𝑝𝑏s) against the respective ground-

truths (𝑦𝑏s). 𝑦𝑏 = 1 if there is at-least one near neighbor present in

the bucket 𝑏, else 𝑦𝑏 = 0. The 2
𝑛𝑑

part of figure 1 illustrates this

step. In our experiments, for each dataset, we pre-generate the 100

exact near neighbors to a query point (using the corresponding

distance metric) and treat them as labels.

KDD ’22, August 14–18, 2022, Washington, DC, USA Gaurav Gupta et al.

0.7

Bucket

Probabilities

1 2 i n

Labels/Vectors

0.10.09

Add Quantized scores

Candidate Labels/Vectors

0.15 0.01 0.280.06 0.5 0.1 0.01 0.15 0.3 0.040.06 0.45

3 34i

Frequency
Threshold

Model 1 Model 2 Model R Data Vectors

(On Disk)

Re-Ranking
(Get topk)

2

Re-rank

Map

34 2

Aggregate
 Not happy?

Re-rank

Input Vector

Figure 2: QUERY PROCESS: Here, the query vector is passed through 𝑅 trained models, and each one gives a probability
distribution over the corresponding buckets. We pick the top-𝑚 buckets with the highest score (space grey colored) and query
an inverted index for candidates. The above figure shows𝑚 = 1 for illustration purposes (in our experiments,𝑚 tends to be
around 10). We use a two-step ranking, first using a frequency-based filter (across the repetitions) and then computing the true
distances on the retrieved candidate set.

Re-partitioning: This is the unique and vital step in BLISS as it

creates a partition with more relevant labels pooled together in a

bucket than the incumbent one. For every label 𝑙 ∈ {1, 2..𝐿}, the
intent is to assign it to the bucket given by 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓 (𝑙), in each of

the 𝑅 repetitions. It is important to note that, for similar labels, the

network will provide very similar 𝑎𝑟𝑔𝑚𝑎𝑥 values, leading to too

many vectors being pooled into a few buckets.

Load Balancing: To overcome this imbalance, we select 𝐾 top

buckets for each label, choose the least occupied bucket among

these, and assign the label to it. It ensures that the label fills the

lighter bucket first to keep up with the load of the top buckets of

similar labels. As we observe later in section 4, we will only need a

small 𝐾 (<10) to maintain a near-perfect load balance. For example,

on GloVe100 dataset with around 1 million vectors, for 𝐵 = 4096,

we only need 𝐾 = 2 buckets to achieve a load variance that is less

than the LSH (Signed Random projection) bucket assignment.

We re-assign labels once every few training epochs (once every

five epochs in our experiments). We alternate between the train-

ing and re-partitioning steps until the number of re-assignments

converges to zero.

2.3 Inference/Query:
After training, we store the trained models and inverted indexes

for all 𝑅 repetitions. During the query process, a vector 𝑞 ∈ R𝑑
is passed through 𝑅 trained nets independently in parallel, where

each gives a 𝐵 dimensional probability vector.

We select the top-𝑚 buckets (a hyper parameter- usually 5 − 20

in our experiments) from each model, which gives a total of𝑚 × 𝑅
buckets to probe. The target candidate set is a union of points/labels

in these buckets. Additionally, we count each candidate’s frequency

of occurrence in the total𝑚 ×𝑅 sets. A higher frequency of a candi-

date label signifies a higher relevance to the query point. Ultimately,

we keep only the higher relevance candidates by filtering and re-

jecting the candidates below a certain frequency threshold from the

pool. If the number of candidates exceeds the required, we re-rank

them by true distance computation on the data residing on disk.

We put them as a memmap array for quick fetching. Please refer to

Figure 2 for an illustrative view of the query process.

Algorithm 2: BLISS Index Query

Input:Models 𝑓𝑟 (.), BLISS Index Π𝑟 , 𝑟 ∈ {1..𝑅};
Query point: 𝑞 ∈ 𝑄 ;
for 𝑟 = 1 to 𝑅 do

B[1 :𝑚, 𝑟] = topm(𝑓𝑟 (𝑞));
end
for b = B[1, 1] to B[𝑚,𝑅] do

𝜙 = 𝜙 ∪ 𝐼𝑛𝑣𝐼𝑛𝑑𝑒𝑥 (b);
end
𝜙 = ScoreThreshold(𝜙);
Candidate set = Reranking(𝜙);

Our procedure will ensure that, for every label vector, each of

the 𝑅 networks has a higher probability of selecting a relevant label

than it can with learning on any predefined random partitioning

(Section 3). Also, candidate set selection from 𝑅 repetitions and

frequency-based filtering exponentially decreases the variance of

our true label estimates.

2.4 Tiny index (BLISS+), using data reordering:
We observed that if we train a single model instead of𝑅 independent

models, BLISS’s index size can drastically reduce to a few MBs for

a Billion scale dataset. To achieve this, we reorder the data vectors

(residing on the disk and accessed through a memmap) according
to the flattened lookup table (indices in buckets) for just one of the

models. We can then discard the lookup table and only keep an

array of bucket offsets in memory. It benefits us in two ways: 1) we

do not store a billion int32 values for the index, and 2) it is faster to

fetch vectors from the reordered data for re-ranking. We call this

variant BLISS+ and empirically show the benefits in Table 2.

BLISS: A Billion scale Index using Iterative Re-partitioning KDD ’22, August 14–18, 2022, Washington, DC, USA

2.5 Modifying BLISS for Extreme Classification
For the case of extreme multi-label classification experiments, the

labels do not have any pre-defined vector representations like the

ANN datasets. Hence, we cannot plug in a label vector and get

a probability distribution over the buckets. To address this miss-

ing link, we modify the probability distribution definition to the

following.

𝑃𝑙 =

𝑁∑︁
∀𝑖 𝑠.𝑡 𝑙 ∈𝑦𝑖

𝑓 (𝑥𝑖), 𝑓 (.) ∈ 𝑅𝐵

Here, for every label 𝑙 , we aggregate 𝑓 (𝑥𝑖) for all 𝑥𝑖s for which 𝑙 is
one of the true labels. It yields a 𝐵 dimensional representative core

for the label across all buckets. Furthermore, we re-assign it to the

least occupied of the top-𝑚 buckets, as we do for ANN datasets.

3 ANALYSIS
In this section, we theoretically analyze BLISS from two main per-

spectives. First, we show that the predicted probability of buckets

corresponding to the relevant labels increases after re-assigning

the labels. Second, we show that re-assigning a label to the least

occupied of the top-𝐾 buckets is the effective strategy to ensure

load balance across the buckets.

Asmentioned, we have 𝐿 vectors being hashed to 𝐵 buckets using

a universal hash function. It randomly partitions the classes into 𝐵

meta-classes. We estimate the top bucket probability𝑚𝑎𝑥 𝑃𝑟 (𝑏/𝑥)
for a input vector 𝑥 , where 𝑏 ∈ {1, 2..𝐵}. Since each of the 𝑅 rep-

etitions is an instantiation of the same process, we only need an

𝑅-agnostic proof that re-assignment enhances the prediction prob-

ability of the most relevant bucket.

3.1 Increasing Relevant Labels’ Probability
through Re-assignment and Training

Theorem 1. For a given dataset with 𝑥 ∈ R𝑁×𝑑 , and its label 𝑙 ,
the expected probability of the bucket containing 𝑙 given the input 𝑥
increases by a positive margin after re-partitioning, i.e.,

E
(
𝑓
′
[ℎ

′
(𝑙)/𝑥]

)
≥ E (𝑓 [ℎ(𝑙)/𝑥])

where 𝑓 (.) is the scoring function given by the neural network and
ℎ(.) is the incumbent hash function that maps labels to buckets.
The increment in this probability results in an increment in the quality
of the retrieved candidates during inference.

The main implication of this theorem is that the bucket con-

taining the relevant label 𝑝𝑙1 gets a higher aggregated probability

as it will have other true labels with higher probability. This in-

crement will be higher in the beginning as the relevant labels get

pooled together. Then the increment dies down to 0 as training

progress, and the model converges to the ideal partition. Refer to

the experimental analysis in the table 1. (Proof is in the Appendix.)

Please note that this increment in probability is manifested

only after retraining on this new partitioning of the labels for a few

epochs. After every re-partitioning step, BLISS naturally trains for

a few epochs. The increased probability directly increases the recall

during the evaluation. Given𝑅 repetitions, the estimated probability

of 𝑙 is given by 𝑃𝑙 =
1

𝑅

∑𝑅
𝑟=1

𝑃𝑟
ℎ (𝑙) . With increasing 𝑅, the error in

the correct label estimation also decreases exponentially.

Average predicted probability (×10
−5
) of the true labels vs Epoch

Epoch 5 10 15 20 25 30

No re-partitioning 5.95 6.54 5.89 4.47 3.44 3.58

BLISS 5.89 10.77 18.35 31.33 34.1 35.34

Table 1: The table shows the increase in the average predicted
probability of the true labels’ buckets with increasing epochs
for two cases; one without re-partitioning (initialize the in-
dexes randomly and fix them throughout the process) and
the other with BLISS. We used the Amazon-670K dataset for
this representative study[14].

3.2 Power of 𝐾 choices
Theorem 2. Consider the process in which, at each step, one of 𝐿

labels is chosen independently and uniformly at random and inserted
into 𝐵 buckets. Each new label 𝑙 inserted in the index can choose one
among 𝐾 possible destination buckets, which are the top-𝐾 buckets
for this label 𝑙 based on a similarity metric. We place 𝑙 in the least
occupied of these buckets.

After sufficiently large number of insertions 𝑡 , the most crowded
bucket at that time contains fewer than log(log(𝐿)+𝑓1 (𝐾))

log(𝐾) + 𝑂 (1) +
𝑓2 (𝐾) labels with high probability, where 𝑓1 and 𝑓2 are monotonically
decreasing functions of 𝐾 .

Please refer to the appendix for the formal proof. It draws paral-

lels from the famous power-of-2-choices framework [27].

When𝐾 = 𝐵, we choose the least occupied bin from all 𝐵 buckets.

Irrespective of any picking up strategy, the buckets will be the most

balance here. With increasing 𝐾 > 1, the loan balance increases;

however, the chance of label reassignment to a high-affinity bin goes

down, reducing the near-neighbor property of partitions. Higher 𝐾

is suitable for load balancing, but it impacts final recall and precision.

The value of 𝐾 used in the experiment is empirically found optimal.

4 EXPERIMENTS

4.1 Near Neighbor Search
We segregate our ANN experiments into two sub-parts. The first

part deals with two small million scale ANN datasets Glove100 and

Sift128. This part is not intended to exemplify the scalability of

BLISS but rather to have a comparison against NeuralLSH, which

is in spirit the closest algorithm to BLISS. Also, the smaller datasets

provide a fertile ground to perform several ablation studies on the

choice of parameters like 𝐾 and 𝐵.

In the second part, we show the massive scalability of BLISS by

indexing 4 billion scale datasets and a 100 MM dataset. We com-

pare against the two most prominent libraries, HNSW and FAISS,

and show that at a similar recall and a competitive inference time,

we require up to 30x smaller indexes in memory. Unfortunately,

we could not scale NeuralLSH to the billion scale datasets as the

underlying KaHIP partitioning is not conducive to the scale.

4.1.1 Evaluation on Small Scale datasets. In this section, we

evaluate the quality of BLISS’s learned data partitions by comparing

the recall against candidate size (a smaller candidate size will lower

the true distance computations). For this, we use two million-scale

datasets from ANN benchmarks [1]- Glove100 [28] and Sift1M.

Glove100 has a total of 1183514 points, each a 100 dimensional

KDD ’22, August 14–18, 2022, Washington, DC, USA Gaurav Gupta et al.

Figure 3: The left figure shows the Load Balance (1/Standard-Deviation) vs. 𝐾 for Glove-100 with 𝐵 = 5000. Larger 𝐾 gets a better
load balance while smaller 𝐾 gets better precision and recall. The middle figure shows the Load Balance as training progresses
for Glove-100. More training and re-partitioning get better load balance. Better load distribution leads to lower query time. The
figure on the right shows the Epoch-wise Recall10@10 for Glove100 for a candidate size of 15K.

vector. Sift-1M has exactly 1 Million points, each a 128 dimensional

vector. We train a fully connected network with one hidden layer

of size 512 for both datasets. The input dimension is 100 and 128,

respectively, for Glove and SIFT. The output layers for both datasets

have the size 𝐵 = 4096. We use 𝑅 = 4 for both experiments. The

number of top buckets (𝐾) to choose while re-partitioning is set to

2. It is the smallest value with the slightest compromise in accuracy

with a good load balance. The choice parameters for this experiment

will be explained in the next section 4.1.2.We compare BLISS against

Figure 4: Comparison of BLISS with other partitioning meth-
ods on Glove100 and SIFT128 dataset: We compare Re-
call10@10 vs. the number of candidates (number of true
distance computations). BLISS is noticeably better than the
very recent learning-based index NeuralLSH.

NeuralLSH and Locality Sensitive Hashing, the former being a

learned partition and the latter a non-learned one. We omitted all

variants of K-Means as they were shown to be inferior in [8]. For

NeuralLSH, a tag of _256 denotes 1 level with 256 buckets, while

a tag of _256_256 denotes two levels, 256 buckets each (Figure 4).

The number of parameters for the best version of NeuralLSH is

256 × 128 × (256 + 1) = 8.42 million. In comparison, for the choice

of our hyper-parameters, BLISS has a network size of 512× (4096 +
128) × 4 = 8.65 million. LSH uses the same number of buckets as

BLISS does (𝐵 = 4096).

Metric: Our metric of interest is the recall of the top 10 neighbors

for a particular candidate size. To be precise, both BLISS and the

baselines only provide a set of candidate points within which we

compute true distance computations to obtain the top 10 closest

points. The intersection of this set with the true top-10 neighbors

is Recall10@10.

Results : Figure 4 shows the comparison with NeuralLSH and other

baselines. Here BLISS varies the number of top𝑚 buckets during

retrieval. We notice that BLISS (red curve) comfortably surpasses

the baselines for a given candidate size.

4.1.2 Ablation Study and choice of parameters. Figure 3(a)
shows the Load Balance of the buckets after 20 epochs for Glove100

for various values of 𝐾 . Load Balance is defined as the inverse of

the standard deviation of bucket sizes. For each 𝐾 , we start with a

random partition of points (using a 2-universal hash function) and

train for five epochs, after which we reassign the 1.2M vectors, as

explained before. As 𝐾 increases, each bucket tends to have nearly

the same number of candidates. However, a larger 𝐾 might compro-

mise the relevance of buckets at query. Since the Load Balance at

𝐾 = 2 is about five times more than Signed Random Projection (SRP,

a popular LSH function), we chose𝐾 = 2 as an appropriate trade-off.

It gives us the right mix of load balance, recall, and candidate size.

Figure 3(b) shows that the load getsmore evenly distributed aswe

iteratively train and re-partition. The re-partitioning is done after

every 5
𝑡ℎ

epoch. We also vindicate that an even distribution lead

helps with the query time (as the number of candidates decreases.

Figure 3 (c) shows the epoch-wise recall for Glove100 dataset. As

we train more, we expect top buckets for a query to contain highly

relevant vectors. The recall increases with epochs in the plot and

converges around epoch 20. Hence, we can safely choose the 20

epochs trained model for our index.

BLISS: A Billion scale Index using Iterative Re-partitioning KDD ’22, August 14–18, 2022, Washington, DC, USA

Figure 5: Recall10@10 for R varying from 1 to 4.

Figure 5 shows the improvement in recall for different candidate

sizes as we increase 𝑅 from 1 to 4. For a given candidate size, we

see diminishing gains in recall after 𝑅 = 4.

4.1.3 Query time and Index size. Higher 𝐵 leads to finer par-

titions, and hence it makes the candidate set smaller (of the order

of
𝑚𝑁
𝐵
𝑅𝛼 , where 𝛼 < 1 is compensating for common labels across

𝑅). This decreases the overhead for filtering the candidate set with

frequency threshold and the eventual true distance computations.

However, larger 𝐵 makes the neural networks bigger and harder

to train and infer. Including the top-𝑚 sorting, the time complex-

ity of the forward pass on the neural network during inference is

(𝐵 +𝑑)ℎ𝑙 + 𝐵 log𝑚, where ℎ𝑙 is the hidden layer size. The total cost

exhibits a time complexity that looks like

𝐶𝑜𝑠𝑡𝐼𝑛𝑓 = 𝑂

(
(𝐵 + 𝑑)ℎ𝑙 + 𝐵 log𝑚 + 𝑚𝑁

𝐵
𝑅𝛼

)
(1)

This minimizes at 𝐵 = 𝑂 (
√
𝑁), with respect to the number of labels

to index. Going by this principle, we choose 𝐵 to be the nearest

power of 2 to

√
𝑁 (to be system-friendly). This number turns out to

be 4096 for the 1 million datasets, 16384 for the 100M dataset and

65536 for the 1 billion datasets.

The total size of index is 𝑅(𝐵 + 𝑑)ℎ𝑙 + (𝑁 + 𝐵)𝑅 (model size +

lookup size). With 𝐵 = 𝑂 (
√
𝑁) and ℎ𝑙 being a constant factor of

𝑑 , the index size grows as 𝑂 (𝑁 + 𝑑
√
𝑁 + 𝑑2). For dimension (or

effective dimension) 𝑑 << 𝑁 , we can safely say that the BLISS

Index size =𝑂 (𝑁).

4.2 Large scale ANN Experiments
In this section, we stress test the scalability of BLISS by measuring

the indexing and retrieval performance on Billion scale datasets

[2] [17] [26] [37]. The details of the datasets are given in Table 3.

As mentioned earlier, the prior baseline NeuralLSH’s underlying

KaHIP partitioning could not scale to the datasets of concern. Hence,

we compare against the two most optimized libraries for industry

scale ANN search, HNSW and, FAISS.

Like with the smaller datasets, we train 𝑅 = 4 independent

feed-forward networks with one hidden layer of size 512 for all

datasets. The input dimensions are specific to each dataset. The

output dimension is the number of buckets 𝐵 = 65536 for the 1

billion datasets and is 16384 for the 100 million datasets, as justified

in equation 1. We train for a total of 20 epochs and reassign the

Figure 6: Recall10@10 vs. Query Time (with batch size 32).
Comparison of BLISS with the baselines on CPU. On the
100M data, we see performance gains in the higher recall
region. Additionally, we beat HNSW and FAISS on index size
by a factor of 22× and around 2×, respectively.
vectors to the buckets once every 5 epoch. We do not use the entire

set of vectors to train. Instead, we take a 1% uniform sample of the

data and obtain the ground-truth near-neighbors for this sample.

For example, for a dataset with 1 billion vectors, we compute the

pairwise ground truth distances for just the 10 million samples and

index only them for training. Post-training, we index the entire set

of 1 billion vectors in under 1 hr. The number of parameters for all

4 models in BLISS is approx. 134 million Additionally, BLISS stores

4 billion integers. This gives a cumulative index size of 15 GB.

For all the experiments (indexing and inference) on BLISS and

baselines, we use a server equipped with AMD EPYC 7742 64-Core

Processor and system memory of 1.5 TB. The RAM helped accom-

modate bulky HNSW indices; however, BLISS
+
and BLISS index

takes just a few MBs to a few GBs, enough to run on a standard

desktop.

For inference, we only use 32 threads for all experiments, and we

do not use any GPUs. Also, we measure the throughput (queries-

per-sec, QPS) and Recall10@10, keeping the number of queries

in a single batch capped at 32. In a real scenario of a large-scale

commercial search system, 32 is a safe batch size that can meet the

stringent latency requirements.

Baselines: We use FAISS’s IVFFLAT index type for a fair compari-

son against a partition-based approach. The number of clusters we

use for FAISS is the same as 𝐵, i.e., 65536 for the billion scale datasets

and 16384 for the 100 million dataset. For HNSW, we use the stan-

dard settings of degree= 8 and the ef-construction parameter= 100.

Results: Figures 6 compare BLISS against FAISS [18] and HNSW

on Deep100M dataset. On this, we use 16384 buckets for BLISS and

the same number of clusters for FAISS-IVF. In the high recall region,

we see that BLISS gives better recall for the same inference speed.

BLISS uses around 0.5 GB for the model and 1.6 GB for the indices

in RAM compared to 44 GB for HNSW and 5.4 GB for FAISS.

During inference, the recall vs. time trade-off is governed by𝑚

(the number of top-scoring buckets we probe among the 𝐵). The

red curve in figure 6 shows the recall vs query time with𝑚 ranging

from 5 to 20. We pick only those candidate vectors from the top𝑚

buckets which appear in at least 2 of the 4 repetitions.

The table 2 shows the Query Per Second (QPS), Recall10@10,

Index size, and the construction time for the four datasets with

KDD ’22, August 14–18, 2022, Washington, DC, USA Gaurav Gupta et al.

QPS Recall10@10 Index size (construction time)

Dataset BLISS BLISS
+

HNSW FAISS BLISS BLISS
+

HNSW FAISS BLISS BLISS
+

HNSW FAISS

Deep1B 249 400 277 222 0.9183 0.81 0.8825 0.919 15.5GB 137MB 437GB 97GB

384 1724 476 769 0.8828 0.6 0.846 0.7887 (1hr) (1.2hrs) (9hrs) (>5days)

BIGANN 121 344 909 243 0.8443 0.658 0.8734 0.8764 15.5GB 137MB 557GB 127GB

344 909 625 526 0.792 0.516 0.76 0.7495 (1hr) (1.1hrs) (10hrs) (>5days)

Yandex TI 110 384 15 4 0.568 0.434 0.566 0.4919 15.5GB 137MB 826GB 194GB

1631 1470 102 18 0.4544 0.3053 0.2629 0.272 (1hr) (1.3hrs) (16hrs) (>5days)

MSSpaceV 220 270 322 613 0.8328 0.73 0.830 0.843 15.5GB 137MB 452GB 101GB

416 1333 1075 1216 0.7879 0.6705 0.784 0.7852 (1hr) (1.1hrs) (9hrs) (>5days)

Table 2: Query Per Sec, Recall10@10, Index size and construction time number on 4 Large scale data [2] [17] [26] [37] against
the popular baselines FAISS[18] and HNSW [24]. FAISS took a long time for indexing, it couldn’t finish the construction for
Yandex and MSSpaceV in the given time constraint.

billion vectors. The two sets of BLISS Recall and QPS numbers

represent top𝑚 = 15 and𝑚 = 5 for a frequency threshold of 2 out

of R=4. FAISS and HNSW numbers are shown with different nprobe
parameters.

BLISS performs quite well and beats HNSW and FAISS by a signif-

icant margin on in-memory index size while achieving very similar

(and sometimes even better) performance on Recall10@10 and QPS

(table 2). HNSW’s current library has an index size requirement of

around 2× the data, often becoming infeasible at a large scale.

Datasets

Deep1B 1 Billion image data by Yandex[2], where the embeddings

are generated from the last fully connected layer of a

pre-trained GoogleLeNet [31], and compressed to 96

dimensions using PCA. Deep100M is its subset.

BIGANN The embedding are SIFT descriptors of 128 dimensions

extracted from 1B images [17] .

Yandex TI Yandex’s 1 Billion Text to image data[37]. It is best

for cross-model retrieval tasks as it contains both text

and image modalities. The Billion images’ embeddings

are produced by the Se-ResNext-101[12] model. The

queries are generated from the text data by theDSSM[13]

model. The embeddings share the representation space,

although the distribution of queries and data is different.

MSSpaceV 1 Billion documents data, released byMicrosoft Bing[26].

The embeddings are generated by Microsoft SpaceV Su-

perior model[3].

Table 3: Details of the Billion scale datasets used for indexing.

The BLISS+ index further brings down the index size to a stag-

geringly low number. Given that the data vectors are reordered

according to the BLISS partitions, the index boils down to an array

of buckets’ size offsets and the learned model. The data resides

on the disk in a memmap format for all the re-ranking processes.

Using just one repetition and ease of data vector reads, BLISS
+
has

significant gains in QPS at some loss in the recall.

Additionally, we note that BLISS and BLISS
+
are very good with

out-of-distribution queries in Yandex Text-to-Image data experi-

ments. We have up to 10x better QPS than HNSW for the same

recall. It proves that BLISS cal learns complex multi-modal distance

metrics that HNSW or the likewise libraries do not. In this dataset,

the input is a text embedding, and the indexed vectors are image

embeddings.

4.3 Multi-label Classification
We use the dense versions of Wiki-500K and Amazon-670K [14]

datasets available on the Extreme classification repository [4]. Both

the datasets have 512 dimensional input vectors. Wiki-500K has

501070 classes with 1646302 train points and Amazon-670K has

670091 classes with 490449 train points.

We train a fully connected network with an input dimension of

512, a hidden layer of size 1024 nodes, and an output of 𝐵 = 20000.

The training was done for 20 epochs, and labels are re-assigned

every five. The baselines of interest are Parabel [29], SLICE [14], An-

nexML [32], Pfast XML [15] and SLEEC [5]. Here we used the best

configuration of parameters used in the experiments of each paper.

The evaluation metric we use is precision at 1,3,5 (P@1, P@3, P@5)

and query time. It is defined as: Precision@𝑘 =
1

𝑘

∑
𝑙 ∈𝑟𝑎𝑛𝑘𝑘 (𝑦̂) 𝑦𝑙 .

As no label vectors are provided, we use the corresponding in-

puts for each label to get a proxy distribution over the buckets (as

explained in section 2). Here we pay an additional re-partitioning

cost of 𝑂 (𝐿) once every five epochs. From the table 4, we observe

that BLISS Index gives the best precision and runtime, beating all

baselines for the Wiki-500K dataset. On the Amazon-670K, it is

faster and more precise on the P@5 metric than the baselines in

comparison.

5 CONCLUSION
We theoretically and experimentally corroborate that BLISS’s iter-

ative learning scheme with the power of 𝐾 choices achieves data

partitions that are better load balanced as well as conformal to

the similarity metrics of any dataset. BLISS is scalable and system-

friendly near neighbor retrieval algorithm that can learn and index

with any similarity oracle, be it a distance metric (unsupervised

setting) or given query-item relevance (supervised setting). Serv-

ing both large-scale ANN and XML problems, BLISS is a perfect

tool for enterprise search. Additionally, BLISS can massively scale

up the retrieval augmented language models, which are highly

knowledge-intensive. We show the real-time performance on Bil-

lion scale datasets, with a minimal index size (few 100 MBs for

BLISS
+
) in memory.

6 ACKNOWLEDGEMENTS
This work was supported by: the National Science Foundation IIS-

1652131, Office of Naval Research DURIP, Office of Naval Research

BRC, and gift grants from Intel, Adobe, and Amazon research.

BLISS: A Billion scale Index using Iterative Re-partitioning KDD ’22, August 14–18, 2022, Washington, DC, USA

Wiki-500K Amazon-670K

Method P@1 P@3 P@5 QT P@1 P@3 P@5 QT(ms)

BLISS (10 buckets) 60.77 46.09 43.49 0.56 35.56 32.68 31.02 1.08
BLISS (5 buckets) 60.69 45.78 43.15 0.47 35.13 32.20 30.58 0.76

SLICE 59.89 39.89 30.12 1.37 37.77 33.76 30.7 3.49

Parabel 59.34 39.05 29.35 2.94 33.93 30.38 27.49 2.85

AnnexML 56.81 36.78 27.45 - 26.36 22.94 20.59 -

Pfastre XML 55.00 36.14 27.38 6.36 28.51 26.06 24.17 19.36

SLEEC 30.86 20.77 15.23 - 18.77 16.5 14.97 -

Table 4: Precision @1, @3, @5 and Inference speeds- QT-Query Time (ms/point) for BLISS on Wiki-500K and Amazon-670K vs.
popular Extreme Classification benchmarks.

REFERENCES
[1] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-

Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.

Information Systems 87 (2020), 101374. https://doi.org/10.1016/j.is.2019.02.006

[2] Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale

datasets of deep descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2055–2063.

[3] BigANN Benchmark. 2021. Billion-Scale Approximate Nearest Neighbor Search

Challenge: NeurIPS’21 competition track. https://big-ann-benchmarks.com/

index.html#call

[4] K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. 2016. The ex-

treme classification repository: Multi-label datasets and code. http://manikvarma.

org/downloads/XC/XMLRepository.html

[5] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain.

2015. Sparse local embeddings for extreme multi-label classification. In Advances
in neural information processing systems. 730–738.

[6] Chih-Yi Chiu, Amorntip Prayoonwong, and Yin-Chih Liao. 2019. Learning to

index for nearest neighbor search. IEEE transactions on pattern analysis and
machine intelligence 42, 8 (2019), 1942–1956.

[7] Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-Index:

A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor

Queries.. In EDBT. 407–410.
[8] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. 2019. Learning space

partitions for nearest neighbor search. arXiv preprint arXiv:1901.08544 (2019).
[9] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in

high dimensions via hashing. In Vldb, Vol. 99. 518–529.
[10] Github. 2016. HNSW memory footprint 104. https://github.com/nmslib/nmslib/

issues/104

[11] R.M. Gray and D.L. Neuhoff. 1998. Quantization. IEEE Transactions on Information
Theory 44, 6 (1998), 2325–2383. https://doi.org/10.1109/18.720541

[12] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132–7141.

[13] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry

Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using

Clickthrough Data (CIKM ’13). Association for Computing Machinery, New York,

NY, USA, 2333–2338. https://doi.org/10.1145/2505515.2505665

[14] Himanshu Jain, Venkatesh Balasubramanian, Bhanu Chunduri, and Manik Varma.

2019. Slice: Scalable Linear Extreme Classifiers trained on 100 Million Labels for

Related Searches. In WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia.
ACM. Best Paper Award at WSDM ’19.

[15] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. 2016. Extreme multi-

label loss functions for recommendation, tagging, ranking & other missing label

applications. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 935–944.

[16] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[17] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.

Searching in one billion vectors: re-rank with source coding. In 2011 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861–864.

[18] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity

search with gpus. IEEE Transactions on Big Data (2019).
[19] Sujay Khandagale, Han Xiao, and Rohit Babbar. 2020. Bonsai: diverse and shallow

trees for extreme multi-label classification. Machine Learning 109, 11 (2020),

2099–2119.

[20] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. Association for Computing

Machinery, New York, NY, USA, 39–48. https://doi.org/10.1145/3397271.3401075

[21] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data. 489–504.

[22] Shaishav Kumar and Raghavendra Udupa. 2011. Learning hash functions for

cross-view similarity search. In Twenty-second international joint conference on
artificial intelligence.

[23] Mikko I Malinen and Pasi Fränti. 2014. Balanced k-means for clustering. In Joint
IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR)
and Structural and Syntactic Pattern Recognition (SSPR). Springer, 32–41.

[24] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[25] Tharun Kumar Reddy Medini, Qixuan Huang, Yiqiu Wang, Vijai Mohan, and

Anshumali Shrivastava. 2019. Extreme Classification in Log Memory using

Count-Min Sketch: A Case Study of Amazon Search with 50M Products. In

Advances in Neural Information Processing Systems 32. 13265–13275.
[26] Microsoft. 2021. SpaceV1B. https://github.com/microsoft/SPTAG/tree/main/

datasets/SPACEV1B

[27] Michael Mitzenmacher. 2001. The power of two choices in randomized load

balancing. IEEE Transactions on Parallel and Distributed Systems 12, 10 (2001),
1094–1104.

[28] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-

1162

[29] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik

Varma. 2018. Parabel: Partitioned label trees for extreme classification with

application to dynamic search advertising. In Proceedings of the 2018 World Wide
Web Conference. 993–1002.

[30] Peter Sanders and Christian Schulz. 2013. Think locally, act globally: Highly bal-

anced graph partitioning. In International Symposium on Experimental Algorithms.
Springer, 164–175.

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.

Going Deeper With Convolutions. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

[32] Yukihiro Tagami. 2017. Annexml: Approximate nearest neighbor search for

extreme multi-label classification. In Proceedings of the 23rd ACM SIGKDD inter-
national conference on knowledge discovery and data mining. 455–464.

[33] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey on

learning to hash. IEEE transactions on pattern analysis and machine intelligence
40, 4 (2017), 769–790.

[34] Yair Weiss, Antonio Torralba, and Rob Fergus. 2008. Spectral hashing. Advances
in neural information processing systems 21 (2008).

[35] Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Róbert Busa-Fekete, and

Krzysztof Dembczynski. 2018. A no-regret generalization of hierarchical softmax

to extreme multi-label classification. In Advances in Neural Information Processing
Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett (Eds.), Vol. 31. Curran Associates, Inc., 6355–6366. https://proceedings.

neurips.cc/paper/2018/file/8b8388180314a337c9aa3c5aa8e2f37a-Paper.pdf

[36] Hao Yan, Shuai Ding, and Torsten Suel. 2009. Inverted index compression and

query processing with optimized document ordering. In Proceedings of the 18th
international conference on World wide web. 401–410.

[37] Yandex. 2021. Text-to-Image-1B. https://research.yandex.com/datasets/bigannsB

https://doi.org/10.1016/j.is.2019.02.006
https://big-ann-benchmarks.com/index.html#call
https://big-ann-benchmarks.com/index.html#call
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/nmslib/nmslib/issues/104
https://github.com/nmslib/nmslib/issues/104
https://doi.org/10.1109/18.720541
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/3397271.3401075
https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://proceedings.neurips.cc/paper/2018/file/8b8388180314a337c9aa3c5aa8e2f37a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8b8388180314a337c9aa3c5aa8e2f37a-Paper.pdf
https://research.yandex.com/datasets/bigannsB

KDD ’22, August 14–18, 2022, Washington, DC, USA Gaurav Gupta et al.

7 APPENDIX
7.1 Theorem 1: Increasing Relevant Labels’

Probability through Re-assignment and
Training

Proof: Let 𝑥 be an input vector whose label set is𝑦 and 𝑝𝑙 denote the
probability of 𝑙 being a true label to 𝑥 . Let the current partitioning

be given by a mapping ℎ(𝑙), where ℎ(𝑙) ∈ {1, 2, .., 𝐵}. Also, assume

𝑙1, 𝑙2 ∈ 𝑦 and 𝑙3 ∉ 𝑦. Given 𝑥 , the probability assigned to a bucket

that contains 𝑙1, i.e., ℎ(𝑙1) is given by the summation of probability

of label 𝑙1 and probability of other labels in the same bucket, i.e.,

𝑃𝑥,ℎ (𝑙1) = 𝑝𝑙1 +
∑︁
𝑘≠𝑙1

1ℎ (𝑘)=ℎ (𝑙1)𝑝𝑘

where 1 is the indicator function.
Now, let us reassign the labels as mentioned in section 2.2. Let the

new partition be given by ℎ
′ (.). If ℎ(𝑙1) ≠ ℎ(𝑙2) and ℎ(𝑙1) = ℎ(𝑙3),

we want the re-partitioning to reverse this adversarial scenario, i.e.,

we expect that ℎ
′ (𝑙1) = ℎ

′ (𝑙2) 𝑎𝑛𝑑 ℎ
′ (𝑙1) ≠ ℎ

′ (𝑙3). Let 𝑍 represent

the event of 𝑙3 being removed from 𝑙1’s bucket and 𝑙2 being added

to it.

𝑃
′

𝑥,ℎ
′ (𝑙1)

= 𝑝𝑙1 +
∑︁
𝑘≠𝑙1

1ℎ′ (𝑘)=ℎ′ (𝑙1)𝑝𝑘 + 1𝑍 (𝑝𝑙2 − 𝑝𝑙3)

In expectation, we get -

E
(
𝑃𝑥,ℎ′ (𝑙1)

)
= E

(
𝑃𝑥,ℎ (𝑙1)

)
+ E(𝑍) (𝑝𝑙2 − 𝑝𝑙3)

By design, 𝑙1 and 𝑙2 are the highest scoring labels given 𝑥 . Hence,

𝑝𝑙1 = 𝑝𝑙2 > 𝑝𝑙3 . Also E(𝑍) ≥ 0 as 𝑍 is a probabilistic event. Hence,

E
(
𝑃𝑥,ℎ′ (𝑙1)

)
= E

(
𝑃𝑥,ℎ (𝑙1)

)
+ 𝛿

where 𝛿 ≥ 0.

The bucket containing the relevant label 𝑝𝑙1 gets higher aggre-

gated affinity as it will have other true labels with higher probability.

The term 𝛿 represents the gain in probability by swapping a nega-

tive label with the true label in this bucket. The 𝛿 dies down to 0 as

training progress, and the model converges to the ideal partition.

7.2 Theorem 2: Power of 𝐾 choices
Proof: Let the number of buckets with load ≥ 𝑖 after 𝐿 insertions

(i.e., the end of the re-partitioning) be ≤ 𝛽𝑖 , i.e., #𝑏𝑢𝑐𝑘𝑒𝑡𝑠≥𝑖 (𝐿) ≤ 𝛽𝑖 .

Our goal is to find an upper-bound #𝑏𝑢𝑐𝑘𝑒𝑡𝑠≥𝑖+1 (𝐿) to find the

maximum load of all buckets.

In the event of a collision, consider that each label stacks up the

on the existing labels like a tower. The height of a label in that case

is the number of labels below it. Let #𝑙𝑎𝑏𝑒𝑙𝑠≥𝑖 (𝑡) represent the total
number of labels that have height ≥ 𝑖 after total 𝑡 insertions. Note
that #𝑙𝑎𝑏𝑒𝑙𝑠≥𝑖 (𝑡) is always higher than the #𝑏𝑢𝑐𝑘𝑒𝑡𝑠≥𝑖 (𝑡), as each
bin with ≥ 𝑖 has atleast one label with height ≥ 𝑖 .

For a new label to land at height ≥ 𝑖 + 1, all 𝐾 buckets (that we

pick) should have load of atleast 𝑖 . With the assumption made in

[27], where the 𝐾 buckets are chosen randomly, the probability of

choosing 𝐾 buckets that have height ≥ 𝑖 is at most 𝑝𝑖 =

(
𝛽𝑖
𝐵

)𝐾
.

Since the number of buckets with
2𝐿
𝐵

insertions can atmost be

𝐵
2
(as total insertions are fixed to 𝐿), we have 𝛽 2𝐿

𝐵
≤ 𝐵

2
. However,

we select the top 𝐾 buckets based on the maximum affinity scores

for a given query vector. In this case, for any sufficiently large

𝐾 ≥ 𝐾0, the probability 𝑝𝑖 is atmost 𝑝𝑖 ≤
(
𝛽𝑖
𝐵

)𝐾
+ 𝛿 , where 𝛿 is

monotonically decreasing function of 𝐾 , 𝛿 = f↓(𝐾). Please note

that the 𝛿 used here is just an abuse of notation and has no relation

whatsoever with the 𝛿 in Theorem 1.

The 𝑡𝑡ℎ label with height ≥ 𝑖 + 1 has probability atmost 𝑝𝑖 .

Number of labels that have height ≥ 𝑖 + 1 is atmost 𝐿𝑝𝑖 . For a fixed

BLISS index parameters 𝐿 > 𝐵. We can safely assume that 𝐿 = 𝐵
𝑐 ,

where 𝑐 < 1.

𝛽𝑖+1 = 𝐿𝑝𝑖 =
𝐵

𝑐

((
𝛽𝑖

𝐵

)𝐾
+ 𝛿

)
Just like the case of random 𝐾 selection, we can set 𝛽 2

𝑐
≤ 𝐵/2 +

𝛿 . We now find an expression for 𝛽 2

𝑐
+1

using induction 𝛽 2

𝑐
+1

=

𝐵
𝑐

(
1

2
𝐾 + 𝛿1

)
and 𝛽 2

𝑐
+2

= 𝐵
𝑐

(
1

2
𝐾2

𝑐𝐾
+ 𝛿2

)
. Here each 𝛿𝑖 is a positive

real number, monotonically decreasing in 𝐾 . The 𝛽 2

𝑐
+𝑖 is given by

𝛽 2

𝑐
+𝑖 =

𝐵

𝑐

(
1

2
𝐾𝑖𝑐𝐾

𝑖−1
+ 𝛿𝑖

)
The probability of a bin with number of balls less than 𝑖∗ is more

than (𝐵 − 1)/𝐵 when 𝛽𝑖∗ > 1. That happens when

𝐵

𝑐

(
1

2
𝐾𝑖𝑐𝐾

𝑖−1
+ 𝛿𝑖

)
> 1

for 𝑖∗ = 2/𝑐+𝑖 , we have 𝑖 < log𝐾

(
log

(
𝐿

1−𝐿𝛿𝑖

))
−log𝐾

(
1 + 1

𝐾
log 𝑐

)
.

This can be further simplified to-

𝑖∗ <
log (log𝐿 + 𝑓1 (𝐾))

log𝐾
+ 𝑓2 (𝐾) + 2𝐿/𝐵

Where 𝑓1 (𝐾) = − log(1 − 𝐿𝛿𝑖) and 𝑓2 (𝐾) = − log𝐾 (1 + 1

𝐾
log 𝑐).

𝛿𝑖 and hence 𝑓1 (𝐾) monotonically decreases with 𝐾 . Additionally,

using the fact that the derivative of

log(1+ log𝑐

𝑥
)

log𝑥
is positive for 𝑥 > 1,

we can conclude that 𝑓2 (𝐾) is also a decreasing function of 𝐾 . Refer

figure 7 below for 𝐿 = 1M, 𝐵=4096 and 𝐿𝛿𝑖 < 1.

Figure 7: Upper bound on maximum load vs 𝐾

Hence, we can say that, with probability more than 1 − (1/𝐵)
maximum load is upper bounded by

log𝐾

(
log

(
𝐿

1 − 𝐿𝛿𝑖

))
− log𝐾

(
1 + 1

𝐾
log

𝐵

𝐿

)
+ 2

𝐿

𝐵

	Abstract
	1 Introduction
	1.1 Prior Approaches
	1.2 Our Contributions

	2 BaLanced Index for Scalable Search
	2.1 Initialization
	2.2 Alternative Training and Re-partitioning:
	2.3 Inference/Query:
	2.4 Tiny index (BLISS+), using data reordering:
	2.5 Modifying BLISS for Extreme Classification

	3 Analysis
	3.1 Increasing Relevant Labels' Probability through Re-assignment and Training
	3.2 Power of K choices

	4 Experiments
	4.1 Near Neighbor Search
	4.2 Large scale ANN Experiments
	4.3 Multi-label Classification

	5 Conclusion
	6 Acknowledgements
	References
	7 Appendix
	7.1 Theorem 1: Increasing Relevant Labels' Probability through Re-assignment and Training
	7.2 Theorem 2: Power of K choices

